Skip to main content

Farmer Managed Natural Regeneration

Value Chain
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Farmer Managed Natural Regeneration (FMNR) is a technique of restoring degraded land and monitoring restoration of the land involving the systematic regeneration and management of trees and shrubs from tree stumps, roots and seed. Degraded arid land often features left over indigenous plants, which if maintained and promoted to grow can improve pasture and crop lands while simultaneously encouraging re-growth of seeds, roots and shrubs. Key to this practice is the existence of living stumps, tree roots and seed that, if encouraged, will regrow. The land is protected from being completely cleared or further grazed and this allows trees to grow without disturbance. Once the stumps and trees start to grow, pruning and trimming of trees is required to allow space between trees and promote healthy long tree trunks. Once the trees have matured, intercropping can take place or livestock can be re-introduced to graze.

While requiring some investment in terms of effort, FMNR has climate smart advantages such as controlling rainfall/irrigation run-off, supporting water quality improvements, providing sources of timber or fodder, supporting habitant regeneration for pollinator insect species, acting as sun shade, and reducing soil erosion.

Technical Application

To effectively implement Farmer Managed Natural Regeneration:

  • Step 1: Degraded land needs to be identified and living stumps, roots and seeds need to be encouraged to regrow. This may include periodic watering. Focus should be on indigenous species, and present tree species (existing stumps).
  • Step 2: Consider leaving the field un-grazed to promote tree growth.
  • Step 3: Select tree stumps and the tallest and straightest stems to grow into trees.
  • Step 4: Prune and manage by removing stems and unwanted side branches.
  • Step 5: Maintain the process by occasionally pruning side branches.
  • Step 6: Manage the land consistently to avoid overgrazing, which can lead to further degradation.
  • Step 7: Consider rotational grazing to allow seeds, stumps and underground shrubs to re-grow. This will reduce the cost of replanting. Shrubs and growing trees and saplings need to be protected before introducing livestock. Shrubs and growing trees and saplings need to be protected before introducing livestock.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Increase availability of biomass, which improves soil fertility and thus production. The trees/shrubs can be a source of income and reduce costs.
Increase Resilience
Reduces erosion of soil and evaporation. Increases water retention and infiltration. Diversifies income sources. Improves yield stability.
Mitigate Greenhouse Gas Emissions
Locks more carbon in plants and in soil.
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_35_FarmerManagedNaturalRegeneration_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • FMNR improves soil quality and reduces soil erosion.
  • Improved dry-season pasture.
  • Agricultural management practices such as pruning, and trimming are carried out appropriately in turn improving growth and air circulation.
  • Higher livestock productivity.
  • Provides protection from wind and shade for livestock, when introduced.
  • Increased availability of firewood, thatch and other non-timber forest-products/materials.

Drawbacks

  • The land needs to be managed consistently to avoid overgrazing.

Boundary Planting

Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Boundary planting, also known as live fence planting, is a technique used to protect crops from the interference of people and animals that can disturb plant growth. Trees/shrubs are a good example of this approach as they can form a shield when planted along the boundaries of the garden or surrounding a planted field. The trees/shrubs act as wind break to shield plants against strong winds causing physical damage to plants themselves, or the removal of soil (erosion). Additional benefits include the use of branches for firewood or building materials, and the other parts of trees can be used as fodder, fruit or leave harvested for consumption, or for medicinal use. Tree/shrub spacing is critical, as trees that have dense canopies can conversely cause destructive down-drafts, negating the intended benefits. Boundary planting helps limit global warming by mitigating GHG emissions through reducing harmful gases such as, carbon dioxide, from the atmosphere and releasing oxygen.

Technical Application

To effectively implement Boundary Planting practices:

  • Step 1: Plant long lines of two fast growing trees, Caesalpinia velutina trees, between a Bombacopsis quinate and a Swietenia humilis to be replaced over time.
  • Step 2: Consider planting the boundary trees 1.5 metres apart along pre-existing fences.
  • Step 3: Attach metal fencing to the trees to support the large trees without endangering their growth. Harvest fodder when the tree is overgrown.
  • Step 4: Prune lower brunches to encourage upward growth of trees and reduce shed on the plants.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Increases availability of tree shrub products (nuts, fruits, timber etc.) and biomass, which improves soil fertility, and thus production.
Increase Resilience
Reduces erosion of soil and evaporation. Increases water retention and infiltration. Diversifies income sources. Improves yield stability.
Mitigate Greenhouse Gas Emissions
Locks more carbon in plants and in the soil.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_33_BoundaryPlanting_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Live fence planting is cost effective, conserves soil moisture, acts a windbreak and reduces soil erosion. These trees have various benefits such as medicinal use, mulch, livestock feeds, fruits, bee forage, timber and firewood.
  • Maintenance of boundary trees is low with short, medium and long ecological and economic benefits.

Drawbacks

  • Boundary planting occupies more land than a single row.

Alternate Wetting and Drying

Value Chain
Annual Average Rainfall
Soils
Climatic Zone
Water Source
Altitudinal Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Alternate wetting and drying also called intermittent flooding is a technique developed by the International Rice Research Institute (IRRI) to control water consumption in rice fields (CGIAR 2014). This technology saves water throughout the year in areas of variable rainfall. It is designed as a pick-up water system in cases when water consumption is cut. Water levels are monitored and controlled by the removal of excess water, leaving enough water to sustain crops. Alternate wetting and drying reduces greenhouse gas emissions especially methane, which is emitted from flooded rice fields (FAO 2016). The drying phase helps to sustain and develop plant roots. Moreover, costs on fuel used for irrigation are reduced.

Technical Application

To effectively implement Alternate Wetting and Drying practices:

  • Step 1: Alternate wetting and drying should be considered by the farmer after two weeks of rice transplant.
  • Step 2: The farmer should consider digging half of 30 cm tube into soil to monitor water level.
  • Step 3: When the water level is 15 cm below the soil surface the field should be irrigated again with a depth of 3 to 5 cm before water drains.
  • Step 4: This cycle should be repeated until flowering stage to avoid disturbing reproduction because at this stage the crops are sensitive to water stress.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Cost of production reduced through less use of water.
Increase Resilience
Maintain production with reduced inputs. Predictable yields.
Mitigate Greenhouse Gas Emissions
May reduce GHG emissions from irrigation pumps.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_31_AlternateWettingandDrying_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Alternate wetting and drying maintains rice yields in areas with variable rainfall/irrigation water supply.
  • Reduces greenhouse gas emission such as methane.
  • The technology can be carried out in regions prone to heavy rainfall.

Drawbacks

  • Water levels need to be monitored carefully to avoid water stress which might decrease yield.
  • Not recommended in areas with potential salinity stress as reduced water inputs might aggravate salinity levels and cause yield decline.

Supplemental Irrigation

Value Chain
Annual Average Rainfall
Soils
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Supplemental irrigation (SI) , also referred to as  Deficit Irrigation, is the application of water below full crop-water requirements, generally in drylands to assist crop growth in areas that experience low rainfall (300-500 mm/year). Supplemental irrigation involves adding limited amounts of water to rainfed crops to improve and stabilise yields when rainfall is insufficient for plant growth. Supplemental irrigation is a valuable and sustainable production strategy in dry regions or when experiencing irregular climatic conditions. This practice requires understanding of the yield response to water and the economic impact of loss in harvest. The aim of this technique is to ensure that the minimum amount of water is available during critical stages of crop growth.

Technical Application

To effectively undertake deficit irrigation:

  • Step 1: Determine critical growth cycle of desired crops.
  • Step 2: Experiment with SI strategies to determine critical watering times prior to upscaling.
  • Step 3: Strict management is required to determine the level of transpiration deficiency allowable without significant reduction in crop yields.
  • Step 4: Farmers capable of implementing deficit irrigation must have access to the minimum required water to implement deficit irrigation.
  • Step 5: Farmers must have access to a reliable water source, irrigation systems, including water distribution system, sprinklers and/or drip irrigation system.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Stabilises yield.
Increase Resilience
Adapts to real time rainfall conditions.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_23_SupplementalIrrigation_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Increase crop production in dry areas or those experiencing drought.
  • Assist farmers manage crops at optimal times (low rainfall).

Drawbacks

  • Farmers must have access to enough water to meet minimum water requirements.
  • Require water distribution system that is functional.
  • Close management of crops to ensure that SI is implemented at critical crop production moments.

Terracing

Value Chain
Annual Average Rainfall
Soils
Topography
Climatic Zone
Water Source
Altitudinal Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Terraces are cross-slope barriers that have been cut into slopes offering surfaces that are flat or slightly sloped. Terraces are designed to minimise erosion and increase the infiltration of runoff water. In addition, terracing allows for a maximum of area for farming and cropping by cutting into slopes, creating steps on a hillside. Riser walls are retained by growing trees or grasses, using stones or compacted soil to manage runoff and ensure stability. Terracing involves significant planning and labour to implement and maintain. Labour should be coordinated and planned to ensure that terracing is not carried out in an ad hoc manner, and labour to maintain the terraces is available annually. Terracing is suited to areas with severe erosion hazards, deep soils, on slopes that do not exceed 25 degrees and are not too stony. Community action is often required, as terracing is a landscape-level solution that can only be implemented if all parties agree and convert slopes together. Implementing individual terraces or terraced sections can negatively impact the entire hillside.

Technical Application

To effectively approach to terracing construction:

  • Step 1: Measure slope angle – should not exceed 25 degrees and soils should be at least 0.5 metres deep.
  • Step 2: Plot the contours – see Technical Brief 16 Contour Planting for instructions for staking-out contours, and the diagram below for use of a t-stick to measure the distance between contours.
  • Step 3: Start at the lowest terrace. Dig a trench vertically below the next contour, and then dig outwards to the lowest contour. Remove soil and place downhill below the lowest contour.
  • Step 4: Compact soil on constructed terrace.
  • Step 5: Work should then progress upslope, emptying top-soil on to the terrace below to provide soil for planting.
  • Step 6: Strengthen riser buttress walls (back-walls) with stones, compacted soil, or by planting grass or trees.
  • Step 7: Terrace-end drainage should also be considered, so water does not pool too heavily. The down-field gutters can be lined with stones to reduce erosion

Detailed diagrams and tables for calculating terrace dimensions are provided in Peace Corps 1986, Soil conservation techniques for hillside farming.

Additional guidance can be sought from videos provided by Access Agriculture: SLM02 Fanya Juu terraces. The Kenyan example provided is also up-slope terrace construction but using a different method where a trench is dug, and the loose topsoil is thrown up-hill (fanya juu in Kiswahili) which forms a ridge that flattens over time.

Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Stable slopes are a critical element of maintaining agricultural productivity.
Increase Resilience
Terraces enhance slope stability and reduce soil erosion in the face of changing climates, with changing temperature and rainfall regimes.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_18_Terracing_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Terracing prevents erosion and can act as a rainfed irrigation system.
  • Terracing is a labourious process to implement and takes significant effort to maintain.

Drawbacks

  • Requires professional advice on implementing terracing.
  • If implemented incorrectly, can have negative impacts including more erosion than without terracing.

Agroforestry: Alley Cropping

Annual Average Rainfall
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Agroforestry is a land management practice that combines the planting and management of trees and shrubs with crops and pasture, providing benefits of soil health, crop yields, resilience to climate change, biodiversity and economic opportunities. Agroforestry encompasses numerous practices, including silvo-pasture, agro-silvo cultural, and agro-silvo-pastural. One successful agro-silvo-cultural practice is alley cropping, where the farmer plants rows of trees, shrubs or hedges between crop rows. Usually hedges comprise leguminous plants intended to fix nitrogen in the soil and provide leaf litter and prunable biomass. The hedges are pruned with the pruned material spread on the ground, to reduce shading and competition with the primary crop. Timing of pruning is important to ensure that the pruned biomass releases nutrients to the soil at a time when the primary crop needs them for maximum crop productivity; e.g. when alley-cropping maize, the pruned biomass needs to breakdown with and release beneficial nutrients into soil from two and eight weeks after planting the maize crop. This approach has proven to be highly successful, with examples in Malawi where gliricidia was alley-cropped with maize where the prunings created a three-fold increase in maize production, which was increased a further 29 % when fertilisers were added. This fertilisation could be achieved with green manure, and other climate smart soil amendment approaches. The space and number of hedge rows to primary crop is dependent upon the field size and the regular growth height of the shrub/hedge. The hedge must not be planted so close that it shades the primary crop. In larger fields, larger deep-rooted timber trees can be planted between groups of rows of primary crop, providing soil benefits, reducing wind-speeds/erosion, and providing timber products.

This approach is considered climate smart as it increases productivity, provides a mechanism for more climate resilient farming, whilst increasing soil carbon levels.

Technical Application

While agroforestry practices are deemed highly beneficial and climate smart, it is important to ensure that proposed practices are appropriate for the specific context – the benefits of the agroforestry practice match the needs of the farmer - and are fit for purpose. Obtain advice from an agroforestry expert before embarking on secondary crop/hedge species selection.

To effectively implement alley-cropping the following should be carried out:

  • Step 1: Clearly understand the objectives of the intervention and identify an appropriate species for intercropping. For maize and sorghum in a smaller subsistence farm setting, selection and growth of hedge rows of a legumes such as cowpea or Gliricidia can provide sustainable benefits in terms of soil quality and secondary fodder/food products. In larger fields, timber trees can be planted every five to ten crop rows, depending on the height of the mature tree, and the shade-tolerance of the crop.
  • Step 2: Identify and understand key conditions, such as prevailing wind direction, and sunlight to ensure that the field is planted in an appropriate configuration, with primary crop and secondary (hedge/shrub/tree) crops planted in such a way as to benefit the primary crop and not compete with it. East to west row orientation should maxmise sunlight, topography permitting.
  • Step 3: For beneficial hedgerow growth with legume species such as Leucaena, cliricidia, and Sesbania sesban, the trees should be planted in rows between two and four metres apart, with individual trees planted as close as possible - between 10 to 15 cm apart. If planted closely, the trees will favour leaves over step growth, creating more mulch to prune for cover. Note that if rows are planted too closely, the secondary crop can dominate the available crop land reducing productivity. Furthermore, the closer the hedges, the more shade will present, which can depress crop growth, and also start to compete for soil water and nutrients, which is not beneficial.
  • Step 4: Once reaching sufficient maturity, after approximately six months (one-metre tall for legumes)– hedges should be pruned to generate mulch for working into the soil. Then the primary crop (maize) can be planted. Pruning once per month thereafter provides cover and ensures that light penetration is maintained. Planting legumes approximately six months before planting the primary crop can ensure that sufficient pruned material is available to incorporate into the soil to enhance growth.
  • Step 5: After harvesting the primary crop, hedgerows can be left to grow taller so that shade reduces weed grown, and to develop material to prune and incorporate into the soil again during the following crop cycle. However, hedges should not be allow to grow too high or dense as their roots will dominate the soil and out-compete primary crops for water and nutrients.

Before implementing any of these technologies, further research may be required beyond the guidance provided here. The World Agroforestry Centre (ICRAF) has many resources, toolkits and success stories that can support such research.

Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Alley cropping and pruning of leguminous hedges increases productivity of primary crops such as maize.
Increase Resilience
Helps farmers to be more resilient to climate change, by sustaining productivity and controlling soil health, especially when faced with changing climates.
Mitigate Greenhouse Gas Emissions
The planting of alley hedge rows of legumes and the introduction of pruned material contributes more carbon to the soil.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_17_AgroForestry_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Trees, shrubs, and hedges are incorporated into farming systems and have many different biophysical and socio-economic benefits.
  • Use of leguminous hedges no only provides pruned materials to provide cover, but they also help fix nitrogen in the soil.
  • Hedges planted in alleys can also provide other benefits such as edible seed pods for human or animal consumption.
  • Hedges and trees can reduce soil erosion from run-off or wind erosion.
  • Alley cropping can provide opportunities for diversified income – selling secondary crops and/or timber.
  • Alley cropped timber trees can provide building materials fire wood.

Drawbacks

  • Initial labour requirements will likely be significant; however, this will be primarily at the earlier stages of the intervention.
  • Ongoing maintenance such as pruning and maintenance of hedges will be needed, although relatively minimal.
  • There may be some costs involved in obtaining hedge seedlings.
  • Use of trees rather than hedges and shrubs introduces more labour, but yields more benefits.

Contour Planting

Value Chain
Annual Average Rainfall
Soils
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Contour Planting is a planting strategy for sloping fields, where crop rows follow slope contours rather than planting in rows up- and down-slope. The primary aim of this strategy is to slow the downhill flow of water and encourage the infiltration of water into the soil. Slowing the flow of runoff water reduces soil erosion and therefore also nutrient loss.

Contour Ridges are created by tilling, ploughing or hoeing soil to establish ridges along contour lines, acting as a barrier to downhill water runoff and other erosive processes - the higher the ridge height, the more effective the barrier is to preventing soil erosion.

Contour Strips involves use of vegetative barriers e.g. planting of strips of grass or hedges and other species to secure soil and further prevent erosion. These practices are labour intense and require extension support, especially as contour lines are not straight but follow slope characteristics, correctly identifying contour lines is important and can be done using the ‘low-technology’ options that are identified in the Technical Application section of this Technical Brief.

Technical Application

To effectively undertake contour planting:

  • Step 1: Construct an A-frame that has a plumb-line with a rock hanging down the centre. The base of the A-frame should be 90 cm.
  • Step 2: Calibrate the A-frame on flat ground. Ensure that both legs are on the ground. Mark where the plumb line meets the cross bar.
  • Step 3: On a slope, working perpendicular to the slope, plant one leg of the A-frame and swing the other leg around until the plumb line meets the mark on the cross bar. Drive a stake into the ground where the first ‘planted’ leg is and continue the process across the slope.
  • Step 4: Once the extent of the contour has been staked, tie a string from post-to-post across the slope; this identifies the contour to be planted.
  • Step 5: Plant selected crops, develop contour ridges or plant contour strips along the contour line.
  • Step 6: Subsequent contours should be spaced 3-5 m up or downhill of the preceding contour line. To determine the length between contour lines, measure off the top of each stake to a stake up or downhill with a tape measure or accurately measured third stick.
  • Step 7: Contour ridges can be implemented like Water Spreading Bunds (Technical Brief 28) to form ridges of soil that are formed by tilling or ploughing and can be left after land preparation to further prevent erosive forces. Crops can be planted between these ridges.
  • Step 8: The planting of contour strips can be implemented by planting grasses or hedges 20 m (shallow slopes) to 10 m (steeper slopes) apart up or downhill, similar to Trash Lines (Technical Brief 14). This intercropping allows for erosion control and can be used as fodder for livestock.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Retaining soil structure enables farmers, particularly those planting on sloping fields to maintain productivity.
Increase Resilience
This land management practice aid farmers to maintain soil structure in the face of changing climates and shifting rainfall patterns.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_16_ContourPlanting_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Contour planting prevents erosion on sloped fields and efficiently trap runoff water.
  • Contour planting improved water infiltration and contour ridges improve water retention.
  • Contour planting can be integrated with intercropping contour strips of grass or hedges to help maintain soil structure.

Drawbacks

  • Contour lines are extremely labour intensive and take a significant amount of time to implement.
  • During contour measuring and development, land may be exposed to erosive forces.

Cover Crops

Value Chain
Annual Average Rainfall
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Cover Crops are incorporated into farming systems and planted in between growing seasons with the primary purpose of preventing soil erosion and improving nutrient content, and promoting soil quality in general, rather than being planted as a regular food or cash crop. Cover crops can also be utilised for food stuff, fodder or cash crops; but these outcomes are usually secondary to the main aim of improving/retaining soil quality. An additional benefit from growing cover crops is reduction in weed growth, and pests and diseases; increases in water availability in the soil; and increased soil biodiversity. Additional benefits are recognised from cover crops in areas with steep slopes, as the retained plant cover contributes to reducing erosion. Cover crops can be combined with other practices including intercropping practices and erosion control measures to further enhance soil quality and structure. Incorporating cover crops into farming systems increases farmers resilience to climate impacts through improving soils, reducing fossil fuel consumption, and increasing soil carbon sequestering. Extension guidance can be beneficial when selecting relevant cover crops to achieve the above outcomes.

Technical Application

To effectively implement cover crops:

  • Step 1:  Research whether locally available crops (especially legumes) provide potential options for cover crops.
  • Step 2: Establish a demonstration plot could provide farmers with an example of how cover crops function.
  • Step 3: Plant cover crops between primary crop growing systems to improve soil fertility, quality and nutrients.
  • Step 4: Monitor soil structure, nutrient levels, and field integrity to ensure efficacy.
  • Step 5: Incorporate cover crops with other climate smart practices enhance soil, including: Intercropping (Technical Brief 07), Crop Rotations (Technical Brief 09) Reduced/No-tillage Options (Technical Brief 12) etc
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Cover crops improve soil conditions, providing an enabling environment for agricultural productivity.
Increase Resilience
In changing climates, cover crops can contribute to adaptation strategies, improving soil health.
Mitigate Greenhouse Gas Emissions
Retains and improves soil quality, including carbon sequestration.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_15_CoverCrops_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Cover crops protect soils from erosion and prevent soil nutrient loss.
  • Preventing weed growth, control pests and disease, increase water availability in the soil and increase soil biodiversity.
  • Cover crops may be non-traditional food crops, fodder and/or cash crops.
  • Low cost option for protecting soils and improving soil fertility.

Drawbacks

  • May take time to determine suitable to improve soils.
  • May increase labour demands as new or unfamiliar crops are incorporated into farming systems.

Trash Lines

Value Chain
Annual Average Rainfall
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Trash lines are the incorporation of lines of organic materials spread across contours of hilly agricultural fields - strips of heaped straw or weed materials that have been collected during primary cultivation of the land. Trash lines have been found to direct runoff in field and act as an erosion control method. Through decomposition, the trash line material acts as a type of compost adding nutrients to the soil, adding more organic material year on year, should the farmer continue to build this line. This is a climate smart approach as it contributes to soil health, capturing more nutrients and carbon in the soil, and in turn promoting sustainable agricultural productivity. In changing climates, implementation of this practice can contribute to adaptation strategies.

Technical Application

To effectively undertake trash lines:

  • Step 1: Collect straw, stalks, picked weed or other organic materials from field or surrounding area.
  • Step 2: Establish contour lines using method identified in contour planting (Technical Brief 16).
  • Step 3: Contour lines for trash lines should be spaced between 5 to 10 m apart.
  • Step 4: Heap straw along contour lines on hilly or sloped fields to be approximately 0.5 m wide and up to 0.3 m in height.
  • Step 5: Trash should be piled on annually or as the field is prepared. Lines can be maintained for a few years and then decomposed materials can be mixed into the soil.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Contribute to soil health and therefore agricultural productivity.
Increase Resilience
In changing climates, strategies such as this can contribute to retain and improving soil health.
Mitigate Greenhouse Gas Emissions
Helps retain carbon in soil.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_14_Trashlines_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Low cost option for soil and water conservation on sloped fields.
  • Increase of organic materials in fields.
  • Green manure (Technical Brief 02) production in the field.

Drawbacks

  • Increased workload to implement trash lines but low effort to maintain.
Subscribe to Neutral

Funding Partners

4.61M

Beneficiaries Reached

97000

Farmers Trained

3720

Number of Value Chain Actors Accessing CSA

41300

Lead Farmers Supported