Skip to main content
Value Chain
Annual Average Rainfall
Soils
Topography
Climatic Zone
Water Source
Altitudinal Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Terraces are cross-slope barriers that have been cut into slopes offering surfaces that are flat or slightly sloped. Terraces are designed to minimise erosion and increase the infiltration of runoff water. In addition, terracing allows for a maximum of area for farming and cropping by cutting into slopes, creating steps on a hillside. Riser walls are retained by growing trees or grasses, using stones or compacted soil to manage runoff and ensure stability. Terracing involves significant planning and labour to implement and maintain. Labour should be coordinated and planned to ensure that terracing is not carried out in an ad hoc manner, and labour to maintain the terraces is available annually. Terracing is suited to areas with severe erosion hazards, deep soils, on slopes that do not exceed 25 degrees and are not too stony. Community action is often required, as terracing is a landscape-level solution that can only be implemented if all parties agree and convert slopes together. Implementing individual terraces or terraced sections can negatively impact the entire hillside.

Technical Application

To effectively approach to terracing construction:

  • Step 1: Measure slope angle – should not exceed 25 degrees and soils should be at least 0.5 metres deep.
  • Step 2: Plot the contours – see Technical Brief 16 Contour Planting for instructions for staking-out contours, and the diagram below for use of a t-stick to measure the distance between contours.
  • Step 3: Start at the lowest terrace. Dig a trench vertically below the next contour, and then dig outwards to the lowest contour. Remove soil and place downhill below the lowest contour.
  • Step 4: Compact soil on constructed terrace.
  • Step 5: Work should then progress upslope, emptying top-soil on to the terrace below to provide soil for planting.
  • Step 6: Strengthen riser buttress walls (back-walls) with stones, compacted soil, or by planting grass or trees.
  • Step 7: Terrace-end drainage should also be considered, so water does not pool too heavily. The down-field gutters can be lined with stones to reduce erosion

Detailed diagrams and tables for calculating terrace dimensions are provided in Peace Corps 1986, Soil conservation techniques for hillside farming.

Additional guidance can be sought from videos provided by Access Agriculture: SLM02 Fanya Juu terraces. The Kenyan example provided is also up-slope terrace construction but using a different method where a trench is dug, and the loose topsoil is thrown up-hill (fanya juu in Kiswahili) which forms a ridge that flattens over time.

Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Stable slopes are a critical element of maintaining agricultural productivity.
Increase Resilience
Terraces enhance slope stability and reduce soil erosion in the face of changing climates, with changing temperature and rainfall regimes.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_18_Terracing_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Terracing prevents erosion and can act as a rainfed irrigation system.
  • Terracing is a labourious process to implement and takes significant effort to maintain.

Drawbacks

  • Requires professional advice on implementing terracing.
  • If implemented incorrectly, can have negative impacts including more erosion than without terracing.

Funding Partners

4.61M

Beneficiaries Reached

97000

Farmers Trained

3720

Number of Value Chain Actors Accessing CSA

41300

Lead Farmers Supported