Skip to main content

Biological Control of Pests

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

The use of chemical insecticides and pesticides can be expensive and therefore not an economically viable option for small scale farmers, while also not being climate smart – widespread use of pesticides and herbicides contributes to greenhouse gas emissions. Encouraging natural predators can be an effective method for controlling and managing pests in some instances. With governments across the globe discouraging the use of chemical insecticides and pesticide products, biological control of pests is preferred and encouraged - using living organisms to control pests. Natural predators are insects that feed on pests without damaging the crop and can be found throughout the crops. Encouraging natural predators helps in supressing pests during their early and late lifecycles, improving crop production and reducing pollution caused by pesticides use. The introduction of water-fowl, such ducks in rice systems can be a highly effective form of biological control of pests. They enjoy aquatic habitats, consume insects and can even contribute to weeding as tear up weed plants as they look for food. Insect predators have different roles in controlling pests, there are predators that will control pests in the early pest lifecycle where they feed on their larvae and eggs while some are present at the late pest cycle where they feed on mature insects. Some species of ants are natural predators of stemborer pests, and wasp and some fly species larvae are parasitoids (larvae that feed on a host organism) prey on fall armyworm. One such wasp is the tiny (3 mm in length) Cotesia marginiventris which feeds on FAW caterpillars. The minute (0.5 mm in length) Trichogramma was species lays it’s eggs inside FAW eggs, killing the FAW larvae in the process. Earwigs (Dermaptera: Forficulidae, Carcinophoridae), ground beetles and ladybird beetles are also known to prey on FAW caterpillars. The issue with many of these solutions is volume of consumption, which may be too low to impact an infestation. Ants are the most important predators of FAW, as the communities consume larger quantities of FAW. However, pesticides drastically impact ant populations.

Technical Application

To effectively leverage biological control and encourage natural predators:

  • Step 1: Conduct regular monitoring using field walk-throughs and utilise bottle traps with various lures/baits to identify main pests on crops in order to identify any pests.
  • Step 2: Once the pests have been identified, consult with national research institutes to identify the best natural predators, or biological control agents* to address the particular pests. It is critical to understand what options are available and costs associated with each option.
  • Step 3: Implement according to advice received.
  • Step 4: Monitor progress in terms of reduction in numbers and incidences.
  • Step 5: Adjust the approach based upon observations from the fields.

A farmer must study the lifecycles of insect predators and be aware of pests that feed on his/her crops in order to identify the intervention that will the most effective in controlling pests at difference phases of their lifecycles. Farmers can create welcoming environments for certain predators to attract them to the field area

Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Reducing pests of all kinds can reduce crop and harvest losses.
Increase Resilience
As climate changes, pests and insects will also change. Bottle traps will help.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_62_BiologicalControlOfPests_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Encouraging natural predators helps improve crop production, reduces the use of pesticides which can pollute both the crop and environment.
  • Introducing a natural predator, or biological control agent can reduce the risk of crop failure, and increase agricultural productivity.
  • Archytas, Winthemia and Lespesia flies prey on FAW eggs, with the fly-maggots feeding on the FAW larvae in order to grow. And ants can be highly effective predators of FAW.
  • Ducks are highly effective in rice paddy fields.

Drawbacks

  • Natural predators are often highly specific to a certain predator, and location/geography/climate; hence, research must be done to establish the most effective method of control.
  • Some natural predators do not consume enough prey to reduce infestations, meaning despite best efforts, crops may still fail.

Mechanical Bottle Traps

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Bottle traps are an agricultural technology used to lure insects inside containers (bottles) containing bait of either food or chemical attractants. The objective is to lure pest insects to identify them for pest control, as part of overall pest monitoring, including field walks, observation and crop inspections. In larger fields they are used solely for pest identification. In smaller fields a number of traps can be used as a pest control method, trapping the insects, but this is not a common approach. Bottle traps must be installed in locations close to or amongst crops and across the farm in order to attract insects for identification and should be used throughout all cropping season to ensure that pests can be identified earlier. As a component of Integrated Pest Management, bottle traps with different lures or baits can be used to attract and identify most types of aphids and mites, fruit flies, stem borers, and fall army worm. While many of the lures and baits can be made at home or on the farm, pheromone-based baits need to be purchased from agricultural suppliers. While this introduces costs, bottle traps and lures can contribute significantly pest management, through early identification so appropriate action can be taken. This technology can contribute to climate smart agriculture objectives, as bottle traps and lures can reduce the amount of pesticides used, reducing greenhouse gas emissions; they can help with identifying new pests and insects as climates shift; and as pests are identified or reduced, productivity can increase. It is important for farmers and workers to keep records of pests identified to ensure that appropriate responses are enacted. There could be cases where infestation levels are low and the cost of taking action may be more that nominal crop losses. However, the opposite may be true, but decisions cannot be made without relevant information for extension workers to discuss with farmers.

Technical Application

To effectively use mechanical bottle traps, the following should be carried out:

Bottle-trap

  • Step 1: Obtain 2L plastic water or soft-drink bottles.
  • Step 2: Rinse bottles thoroughly to avoid contents affecting lure.
  • Step 3: Cut bottle horizontally using sharp scissors or knife, ensure that the top-half is slightly shorter than lower-half.
  • Step 4: Turn the shorter top-half upside down and insert into lower-half ensuring the top- half does not touch the lower surface of the bottom-half.
  • Step 5: Poke holes in both sides, penetrating both layers (top and bottom halves) and insert string, cord, or wire to create a handle.
  • Step 6: Hang on tree branches or on thick wire or wooden stands around field perimeter and in larger fields within fields.

Specially designed all army worm traps can be purchased at agricultural suppliers. Farmers may also need a magnifying glass to identify insects.

Lures or bait

  • Step 1: Identify the types of insect or pest you wish to lure, to ensure the correct mix.
    • For fall army worms, use a pheromone lure – which should be purchased from an agricultural supplier.
    • For maize stalk/stem-borers, again pheromone bait is the most effective.
    • Flies are attracted by sugar-based solutions, or protein (meat) based for carrion flies.
    • Fruit flies are attracted by ripe-fruit, cider vinegar, beer and wine.
  • Step 2: Place 2 to 4 cm of lure at the bottom of the lower half of the bottle, depending on size of the bottle – the larger the bottle, the more lure. Ensure that the lure smell must be strong, but not too intense so that it attracts insects rather than chasing them away.
  • Step 3: Use only one lure per bottle trap as more than one might cause contamination leading to ineffective attractants.
  • Step 4: Clearly mark bottles indicating the type of lure in use – permanent marker pen.

Use of disposable gloves is advisable when handling lures.

Unopened pheromone lure packets should be kept in a cool, dry places – preferably a refrigerator.

Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Can lead to reduced usage of pesticides, hence reducing GHG emissions.
Increase Resilience
As climate changes, pests and insects will also change. Bottle traps will help.
Mitigate Greenhouse Gas Emissions
The use of bottle traps can be used to identify pests for control, supporting productivity through appropriate pest control.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_61_MechanicalBottleTraps_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Bottle trapping is a cheap and effective method for monitoring insects on a farm and identifying those that may affect productivity and/or lead to significant losses.
  • This technique can be used to identify the insect that are infesting the field and which areas they are more concentrated, providing information for targeted interventions.
  • In smaller fields, or in times of intense infestation, bottle traps themselves can be used to lure and control pests.

Drawbacks

  • Precaution is required when handling chemical-based lures as they can be harmful to humans and animals, and can negatively impact crop yield if used incorrectly.
  • Some lures can only be purchased at agricultural suppliers.
  • Cannot be used operationally to control pests in larger fields.

Vaccination Campaigns

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Vaccination is the administration of immunisation injections to animals in order to prevent, control spread of diseases.  Vaccination campaigns involve administration of vaccine doses to a large population over a short period of time. The veterinary services departments or equivalent of respective countries normally gives free vaccinations to the farming community's animals for diseases which are of either economic significance to people's livelihoods or those that maybe of zoonotic importance (communicable to man from animals). These campaigns are usually fully funded by the government, NGOs to reduce disease outbreaks, prevent spread of an outbreak or improve national herd productivity, and are designed to reach as much livestock as possible. In most countries, free vaccinations are offer for the following diseases: Anthrax(-Cattle), Quarter evil or black quarter disease (Cattle), Contagious abortion (Cattle), Rabies (Dogs & Cats), Foot and Mouth Disease(Cattle)_ as per OIE designation in Disease Control Zones.

 For the message to reach farmers, community radios and involvement of traditional leadership can be used to encourage farmers to participate in vaccination campaigns.  This will help to gain trust and confidence from farmers for the campaign to be successful. Vaccination campaigns is a climate smart practice as it ensures a healthy population able to utilize feed efficiently with a reduced population discharge thus reduced GHG emission.

Technical Application

To effectively implement vaccination campaigns:

  • Step 1: Networks that notify farmers about upcoming vaccination campaigns must be established to promote the significance of vaccinating animals across the country. This can be promoted through government bulletins and community radio, utilising extension networks, village level administration, and traditional leadership.
  • Step 2: Vaccination parks for cattle can be set up by veterinary officials to restrain livestock movement that might increase disease spreading.
  • Step 3: Goats and sheep can be vaccinated at their locations where officials will move from one village to another to reach more population.
  • Step 4: Training of personnel is important to ensure that vaccination is carried out before seasonal outbreaks and prevent the spread of disease.
  • Step 5: Commence campaigns one month prior to the season when outbreaks are most common or upon notice of a disease incidence.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Reduces incidence of disease results in healthier, more productive animals.
Increase Resilience
Reduces risk of secondary infections in livestock. Sale of livestock is a common coping strategy so having more/better livestock to sell increases resilience.
Mitigate Greenhouse Gas Emissions
Livestock population with a potential for more efficient conversion of feed into meat/diary which can reduce emissions per unit production.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_55_VaccinationCampaigns_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • The objectives of vaccination campaigns are to reduce the number of animals that are affected by disease outbreaks and prevent treatable diseases from reducing national herd population which may affect farm income.
  • Awareness must be established in order to gain farmers trust and involvement for the campaign to be successful.

Drawbacks

  • No 100% guarantee of protection of animals/birds.
  • Postpone vaccination campaigns if an outbreak is in progress.
  • For ring vaccinations upon outbreaks, proper delineation of the perimeter is important.

Resistant Breeds

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Resistant breeds Disease resistance is the reduction of pathogen growth in or in a plant or animal; denoting less disease development in a particular breed than that which is relatively susceptible and is specific to a particular strain of disease or attribute. Breeding resistant breeds  . Resistance” means the animal actively fights infection by various means. Building resistant breeds can be done through selection. Selective breeding, sometimes called artificial selection, where different breeds of animals with desired characteristics or attributes like resistance to. drought, heat, cold, salinity, flood, submergence and pests can be developed by selective breeding and thus able to relatively thrive in some conditions which would otherwise not be able to, e.g. This assists in the reduction of diseases, results in healthier productive animals and reduces risk of secondary infections in livestock. These breeds create a potential for more efficient conversion of feed into meat or diary, and thus a climate smart attribute since by reducing emissions per unit of production (proportionately less faeces are dropped per unit consumption of feed) as well as contributing to food security.,. In the Southern African Development Community (SADC) region, local breeds are more resistant to many of the pests and diseases and may be the best option for some farmers in the Arid and semi-arid areas of the region.

Technical Application

To effectively implement resistant breeds:

  • Step 1: Breed livestock with increased resistance against pathogens or other environmental stressors (heat stress).
  • Step 2: Select animals of higher general disease resistance (resistance to several diseases) using a heritable indicator such as natural antibodies.
  • Step 3: Keep record of good performing animals; unhealthy or easily prone of weak animals should not be used for mating; males should be castrated leaving best specimen to breed in subsequent seasons.
  • Step 4: Breed or inseminate the selected cows with desired or selected bulls or semen of the desired traits.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Reduces incidence of disease, results in healthier, more productive/efficient animals.
Increase Resilience
Sale of livestock is a common coping strategy so having more/better livestock to sell increases resilience.
Mitigate Greenhouse Gas Emissions
Potential for more efficient conversion of feed into meat/diary which can reduce emissions per unit production, thus less GHG emissions.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_54_ResistantBreeds_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • With resistant breeds, selecting of male breeds is a long-term climate smart adaptation because they are likely the most resistant.
  • Farmers should identify females in heat and isolate them with selected male animals. This results in productivity increase, higher resilience and cost effectiveness.

Drawbacks

  • Breeding should be controlled to achieve best practice results and farmers should be able to detect when female animals are on heat.
  • Parental performance records should be kept at all times.

Species Diversification

Value Chain
Annual Average Rainfall
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Species diversification involves a shift from a single species of livestock to more species in an attempt to manage risk and explore more resilient livestock farming options. Species diversification can be introduced in response to changes in local environment/climate conditions, including increasing temperatures, unreliable sources of water and availability of pasture, etc. The aim of this approach is to explore the introduction of species that may be more viable and adaptable in changing local conditions thus improving production levels by keeping animals that will be productive under harsh weather conditions and sustain the quality of the produce. Diversification as a climate smart practice assists farmers with utilising available resources more effectively, e.g. mixing grazers and browsers. Species that react well to changing climatic conditions may cause a shift of demand from grazers to browsers. This practice mitigates disease control, can improve soil fertility and increase water management. Government policies can also influence farmers in diversifying their species with many countries dedicating agricultural research and extension to explore the introduction of different species (e.g. cattle to goats) to assist farmers. It is important that species that are introduced do not have an adverse impact on local fauna or the surrounding environment.

Technical Application

To effectively implement species diversification:

  • Step 1: Research possible species of livestock that may be productive in the climate of the surrounding area and compatible with existing livestock.
  • Step 2: Communicate with national agricultural extension/neighbouring farmers and research to gain an understanding of which breeds have been identified as having potential locally and which are available in the region. Other farmers in the area may have information and experiences to share.
  • Step 3: Inform neighbouring farmers of the potential species that they may be interested in including into their farming system.
  • Step 4: Outline the positive and possible negative aspects of incorporating different species into their system.
  • Step 5: Identify how farmers can access different species and whether they are available at local markets or if these species need to be imported from other areas of the country/region.
  • Step 6: Monitor introduced species to ensure that impacts – positive and negative – are understood.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Utilises available resources more effectively to maintain agricultural productivity.
Increase Resilience
Diversification can be an adaptation strategy, identifying species with beneficial traits under changing climate conditions.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_52_SpeciesDiversification_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Species diversity can assist farmers become more climate resilient by adjusting livestock holdings more adaptable species (camels, goats, etc) as other species can survive on less water and lower feed demands.
  • Diversification may have significant impacts on household food security, income and be more productive.
  • Different species may have traits that are more adaptable to harsh conditions including temperature increases, resistance to disease, drought tolerant, allowing more sustainable productivity (continue to produce milk, eggs meat etc.) and staying in line with market demands during harsher conditions.

Drawbacks

  • Introduction of exotic species can have negative impacts and may push traditional breeds out or have adverse effects on local fodder, water sources etc. if not managed correctly.

Alternative Breeds

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

The Alternative breeds approach involves substitution of breeds, introducing a new (alternative) breed with a current breed to potentially increase production levels in a farm. Breed substitution involves genetic improvement of cattle and goats especially in dairy farming and meat production. Alternative breeds are introduced in order to ascertain competition between breeds based on health, fertility, performance, profits and management requirements. The substitution breeds are picked because there some traits that may be lacking in current breeds at the farm. For example, some farmers in Malawi who have introduced the Black Australop breed of chicken, either by crossbreeding with local chickens or replacing the local chicken altogether. This breed produces much more meat and lays more eggs, which increases farm production and income. This is a climate smart option as it introduces breeds that may require less water or can manage with lower quality feed – thereby reducing costs, and risks.

Technical Application

To effectively leverage alternative breeds:

  • Step 1: Consult with national agricultural research and extension services to identify adaptable breeds available in the country/region, noting type of traits suitable for the particular ecological zone, and how to access stock. Traits to focus-on include health, milk production, disease tolerance, fertility, economic performance and adaptation to climate change and climate variability. Assisting with sourcing potential alternative breeds is a key role for Extension Officers.
  • Step 2: Before selecting a substitution breed, the current breed must be evaluated to identify traits that are lacking, as well as compatibility. This will help in identifying traits that need to be improved.
  • Step 3: Determine the cost effectiveness of the new breed to the area and or farmer, in terms of feed conversion rates, disease resistance, environmental conservation etc.
  • Step 4: Consistently keep record of the livestock performance and behaviour for discussion with other farmers and extension officers.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Switching to alternative breeds can increase productivity in meat, milk and egg production.
Increase Resilience
Changing to alternative breeds can form part of a successful adaptation strategy as climates change.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_51_AlternativeBreeds_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Alternative breeds are used to improve the genetic qualities of livestock.
  • This agricultural practice improves biological diversity, ensures food security, increases farm income and most importantly reduces risk as cross breeds in future will be more resilient to climatic variations.

Drawbacks

  • Requires research to identify suitable breeds.
  • Livestock will require frequent monitoring to ensure cross-breeding is yielding required results.
  • Replacement breeds should also be monitored to ensure they are adjusting to the local conditions.

Assisted Reproduction

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Assisted reproduction refers to artificial insemination, where semen is deliberately introduced to fertilise eggs in domestic animals. Artificial insemination helps in obtaining genetic improvements that yield higher production levels. This practice is more expensive but more efficient than natural reproduction. Artificial insemination reduces the risk of disease transmission and injuries or accidents during mating. Sperm duplication can be done from a single ejaculation to make hundreds of doses and distributed across farmers to have variety of breeds rather than off-spring from single bulls. This prevents inbreeding and promotes hybrid vigour among farmers’. In the southern African context, where most grazing is communal, use of bulls to improve breeds can be challenging as it is difficult to adopt a grazing system that will ensure good quality breeds are able to pass their progeny to the next generation, as young and likely non-superior bulls are likely to mate with cows during grazing. To achieve genetic improvement using open grazing requires controlled grazing systems, e.g. by use of paddocks to manage bulls grazing and mixing with cows.

Technical Application

To effectively implement assisted reproduction using artificial insemination:

  • Step 1: A qualified veterinarian or service provider should be readily available and preferably contracted to carry out the procedure as they should have the necessary training, instruments and facilities to carry out procedures;
  • Step 2: The farmer should suggest the type of breed for his animal, and the veterinarian should advise the farmer on the feasible breed for the cow.
  • Step 3: The farmer has to identify the cow on heat by observing the heat signs (uneasiness, making loud unusual noise, mounting others, standing when mounted, producing mucus discharge from the vulva, etc.)
  • Step 4: The identified animal is isolated from the rest of the animals.
  • Step 5: Communicate with the veterinarian or trained service provider to carry out the procedure by determining the readiness of the cow to undergo the AI service (stage of heat cycle). Early reporting increasing chances of successful conception.
  • Step 6: The veterinarian or service provider then carries out the procedure to the cow after confirming readiness of the animal.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Assisted reproduction increases the chance of conception, producing more cattle for milk or meat.
Increase Resilience
Assisting reproduction in hybridised cattle can form part of an adaptation strategy.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_50_AssistedReproduction_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Artificial insemination reduces injuries and accidents during mating, especially with heavier animals such as cattle.
  • Farmers can collect semen and sell it to other people to obtain cash that will assist them in their daily activities to manage livestock.

Drawbacks

  • It is more expensive but more efficient than natural processes.

Cut and Carry

Value Chain
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Cut and carry is the agricultural practice of cutting and carrying fodder crops away from the field that they are grown in to feed to livestock. Fodder trees, shrubs or grasses are sources for livestock feed in this practice. Cut and Carry is a key CSA practice where overgrazing is a problem. This practice takes pressure off grazing land at critical periods, reduces land degradation caused by livestock and increases soil organic matter, while still feeding livestock for productive outcomes. This practice can also be used in more intensive livestock production where livestock are kept housed for periods stretching from half a year to a year and improved nutrition is required. However, fodder production can be costly in terms of cultivation, requiring significant management over and above the livestock themselves. Fodder is collected from sites where it grows naturally, or it can be grown in fodder banks, hedges, boundaries, etc. Feeding livestock using this approach can ensure the supply of a large quantity of high quality and palatable fodder within a short time, as well ensuring soil is not disturbed through open grazing systems, thus a good CSA practice. It can be adapted to the farmer’s needs and can provide a way of introducing the farmer to the concept of improving livestock at the same time as conserving soil.

Technical Application

To effectively implement cut and carry systems:

  • Step 1: Cut and carry commences with the cutting of the crop.
  • Step 2: Cut crop when plants are fully mature (vegetative growth and plant sugars are at their peak). This ensures that protein, digestible energy and dry matter percentage are at their highest potential.
  • Step 3: Fodder can be fed directly or dried as hay or preserved as silage to conserve its value and be fed to livestock during the dry season or other critical times throughout the year.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Fodder can be harvested on multiple occasions during times of plenty and preserved for later, rather than leaving as standing hay.
Increase Resilience
Reduces pressure of grazing by limiting period livestock tread on land causing denudation at critical periods (with less cover).
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_46_CutAndCarry_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Improves fodder production and farm income.
  • Growing fodder crops in rainy seasons encourages fodder conservation for dry season feeding.
  • Can be combined with crop rotation and intercropping to form part of positive farm management practices.
  • Cut and carry can relieve pressure from pasture and grazing land, contributing to control of over-grazing, while improving soil quality.
  • Can create job opportunities and income generation for youth farmers.

Drawbacks

  • The practice will require additional labour resources.
  • Can be costly in terms of management.
  • Farmers must have enough land to grow fodder on or have access to communal land.
  • Soil condition in the fodder fields must be carefully monitored to ensure that soil nutrients aren’t depleting.
  • Fodder storage must be monitored to ensure bacteria and mould do not affect the quality of feed.

Increased Palatability

Value Chain
Annual Average Rainfall
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Palatability - referring to plant features or conditions that encourage animals to feed on the plant when given a choice – is important as the ability or willingness of animals to feed on specific forage determines the efficiency of production of animal products. When feed is consumed in larger quantities, depending on its nutritive value, it helps increase milk and/or meat production. Plants with stiff and harsh leaves are generally not palatable to animals, unlike those with softer leaves and grass. The nutritive value of the plant matters when it comes to palatability. Palatability will be determined by the texture, aroma, succulence, hairiness, leaf percentage, sugar content and other factors. Moreover, leaves are more palatable than stems. Palatability of plants can be increased by grazing livestock at the optimal grass growing stage before seed formation, using a High Intensity, Low Frequency (HILF) grazing pattern which allows uniform grazing of pastures and gives an allowance for regrowth and thus overall, uniform soil cover. Addressing palatability is often of greater concern during dry season, when grazing/pasture is less common, and farmers have to rely on stored silage.

Technical Application

Traditional knowledge can also yield positive results in identifying sources of alternative dry season feeds, especially specific types of tree leaves and grasses. In mixed maize and livestock farming system, maize stovers can be utilised for more palatable feed supplements. To effectively improve palatability, the following steps should be carried out:

  • Step 1: Where possible, mix grazing species to include browsers and grazers for uniform pasture use. Mixing livestock will reduce overgrazing on certain plants or plant types, distributing grazing pressure. This is a preventative measure. Over-seeding can be used  to fill in bare patches in fields, improve the density of pasture, establish improved grass varieties and enhance your grass vigour. It’s an easy way to improve an existing old or worn out, diseased or insect prone pasture by planting of grass seed directly into existing pasture, without tearing up the pasture, or the soil.
  • Step 2: Speak to agricultural suppliers as palatability can be improved by enhancing the quality of the feed through addition of feed supplements.
  • Step 3: If using silage from high moisture crops, it may be worth exploring feed flavourants as they mask the odours and flavours of alcohol formed as plant material ferments. Natural flavourants can include garlic, anise and black cumin, but artificial flavours are also available. Ratios for addition to fodder is very low - 0.5 to 1.5 %.
  • Step 4: If using dry grass for feed, chopping and addition of molasses  and other concentrates can improve palatability of drier grasses; however, as it needs to be mixed with urea and water, guidance should be sought in terms of mix-ratios from a veterinarian to ensure that urea intake does not exceed recommended amounts.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Increasing palatability of feed increases consumption and as a result, production.
Increase Resilience
Identifying methods for increasing palatability enables farmers to broaden fodder options, which can support adaptation if normal feed stock is affected.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_45_IncreasedPatabilityAcceptability_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Over-sowing increases forage quality and productivity.

Drawbacks

  • Pasture palatability is affected by factors such as taste, smell and starch content.

Use of Feed Supplements

Value Chain
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

General Feed Supplements are used to increase nutrients in livestock diets, with the aim of maintaining or improving livestock health through adequate animal nutritional balance and therefore productivity of milk or meat. These supplements include vitamins, amino acids, minerals, and other nutrients. Supplementary feeding can becoming either a regular part of the production cycle to help match feed demand to feed supply, assisting livestock farmers meet production requirements as defined by market specifications, or reserved for times of shortage during dry spells and/or droughts. The extent to which supplementary feeding is applied depends on the farm/business objectives and seasonal conditions. This is especially true in areas of low-quality crop residues and low quality pasture land.

Feed supplements are presented in granular, powder or block form and used during milk production and fattening stages for meat production. However, if consumed in excess feed supplements can be harmful to animals causing toxicity and if persistent, death.

Technical Application

To effectively implement Improved digestibility, Improved protein content:

  • Step 1: Inform farmers of the possible benefits of increased dietary protein in their livestock in order to implement dietary supplements.
  • Step 2: Identify a supplement contain the key amino acids - Methionine, Lysine, Threonine, and Tryptophan, in consultation with suppliers and veterinarians.
  • Step 3: Added supplements to green plant residue (silage) as guided on packaging or by supplier to increase the efficiency of protein in livestock. Ensure that supplement amounts are suitable for animals and the type of feed being supplemented.
  • Step 4: Ensure that supplements sourced will be consistently available from suppliers in the region. These supplements can be purchased at most agricultural shops, including rural areas.
  • Step 5: As a low-cost option, farmers can formulate rations specific to their livestock. These rations are only for domestic use and not commercial.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Can supplement conventional feed to enhance productivity
Increase Resilience
Can help livestock get through lean periods by preserving fodder.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_42_UseofFeedSupplements_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Feed supplements are used to balance animal nutrition, resulting in high market value and quality of livestock.
  • They help improve animal productivity and nutrition.
  • Beneficial in areas of poor pasture or during drought seasons where animal feeds are scarce.

Drawbacks

  • Excessive consumption of supplements can be toxic to animals and can lead to death if over consumption persists.
Subscribe to Neutral

Funding Partners

4.61M

Beneficiaries Reached

97000

Farmers Trained

3720

Number of Value Chain Actors Accessing CSA

41300

Lead Farmers Supported