Skip to main content

Short Term Reactive Practices

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Short-term reactive practices are control options for pests and diseases once they have reached a level where the economic losses are likely to be greater than the cost of controlling the pest/disease outbreaks and can be used to maintain or increase production. Pests and diseases are better detected at an earlier stage to make it easier to act and prevent severe crop losses and prohibit the spread of pests and diseases throughout the whole field, achieved through regular and systematic field inspections. The practice is considered climate smart as it reduces losses, which in-balance lowers greenhouse gas emissions per tonne of crop produced, it retains agricultural productivity through management of pest infestation and/or disease outbreaks, and is applicable as it can assist farmers adjust to changing climate, and the threat of new and changing pest diseases.

Technical Application

To effectively implement  short term reactive practices:

  • Step 1: Inspecting the crop regularly and systematically by walking through the field following an M-shaped pattern will ensure that the farmer does not just look around the edges, but also inspects in the middle of the field.
  • Step 2: Farmers should carefully examine the crops for any signs of pests/diseases. They may be able to identify the presence of pests or disease through observing the following:
    • If the plant is wilted.
    • Are the leaves more yellow than usual?
    • Are the crops smaller than usual?
    • Do the leaves have spots?
    • Have parts of the plan died?
  • Step 3: Once the foreign specie has been identified, the farmer should employ a method to eradicate the issue thoroughly and immediately.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Reduced losses result in lower GHG emissions per tonne produced.
Increase Resilience
Reduces losses due to management of pest/disease outbreaks.
Mitigate Greenhouse Gas Emissions
Farmers can make informed decisions resulting in sustainable losses.
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_59_ShortTermReactivePractices_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Short term reactive practices eradicate the pest or disease.
  • The aim is to protect the long-term health of the field/herd for the next season or growing period.

Drawbacks

  • Pests and disease can have devastating impacts on both crops and livestock and can persist throughout growing seasons.

Push and Pull Systems

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

A push pull system is a technique that repels parasitic plants and pests that attach themselves to the crop roots and feed on them.. In push-pull, a cereal crop is intercropped with a leguminous plant like desmodium or molasses grass, while a popular fodder crop, Napier grass, is planted as a border around the field. Desmodium produces volatile chemicals that attract predators of the cereal e.g of maize pests. More importantly, by giving a false distress signal to the moths that the area is already infested, these chemicals ‘push’ the egg laying moths away from the crop to seek out habitats where their larvae will face less competition for food. Napier grass also produces volatile chemicals that ‘pull’ the moths towards them, and then exudes a sticky substance that traps the stem borer larvae as they feed. Few larvae survive. Napier grass attracts stem borer predators.  The intercropping is a climate smart practice as it mitigates emission of Greenhouse gases through the reduced need for pesticides. The push-pull system improves food security and boosts farm income.

Technical Application

To effectively implement  push and pull systems:

  • Step 1: Plant Napier and a legume like Desmodium or molasses grass  between every three rows of maize/sorghum as barriers to repel stemborers away from crops.
  • Step 2: Plant the Desmodium first as soon as the rains begin, so it immediately repels the stalk borers before the maize/sorghum emerge.
  • Step 3: Plant three rows of Naiper grass around the borders of maize field.
  • Step 4:  Allow pest enemies such as ants and spiders to enter the field to feed on stemborers.
  • Step 5: Cut grass and fed to animals as forage.
  • Step 6:  Abandon areas that are heavily affected by stemborers until treated.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
A push-pull system supports sustainable productivity by reducing the need for expensive pesticides, and boosting farm income.
Increase Resilience
A sustainable and environmentally friendly method for maintaining soil health and productivity while controlling pests.
Mitigate Greenhouse Gas Emissions
Reduced application of synthetic fertilisers reduces greenhouse gas emissions.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_58_PushandPullSystems_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Reduces the need for pesticides.
  • Improves food security and boost farmers’ income.
  • The green technique deals with trapping the pests (pull) and repelling them (push) by planting Napier and desmodium or molasses grass next to cereal crops.
  • The relationship between insect-plant and insect-insect (introducing pest enemies such as ants/spiders) is achieved in order to kill stemborers.
  • Grass planted next to crops can be salvaged and used as forage.

Drawbacks

  • Naiper grass take up space on the field.
  • Cost and lack of availability of Desmodium seed.
  • Difficulty in establishing the Desmodium crop, hence practice not suitable for all farmers.

Continuous Long Term Proactive Practices

Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Cultural pest control practices Are pest control management measures to control pests (insects, diseases, weeds) by manipulation of the environment or implementation of preventive practices including using plants that are resistant to pests, raising the mowing height of pastures to shade out weeds, aerating pastures to reduce compaction and plant stress. Several beneficial cultural practices can meet both demands, helping with pest and disease control and minimizing the use of toxic chemicals. In the insect pest management context, cultural practices may be considered as specific crop production practices that may be implemented either in the initial stages of the organic farm plan but also as a continuous plan to reduce the likelihood of insect pest infestation to a crop and damage. They form part of the Integrated Pest management (IPM) Practices and are based on tactics to disrupt pest infestation of crops by having the crop unavailable to pests in space and time, making the crop unacceptable to pests by interfering with host preference or location, reducing pest survival on the crop by enhancing natural enemies, altering the crop’s susceptibility to pests. The tactics or methods used in IPM include one or a combination of the following: Cultural control (crop rotation, use of locally adapted or pest resistant/tolerant varieties, sanitation, manipulating planting/harvest dates to avoid pests). Cultural pest control or IPM results in reduced pests/diseases and increased yields and is a climate-smart practice as its emphasis of prevention helps to control pests and diseases before they occur;  its continuous long-term practices without use of chemicals encourage healthier and more pest resilient crops and landscapes, encouraging the use of beneficial insects  making it an adaptation benefit. The possibility of prediction and recognition of pest outbreaks enables earlier management consultations and decisions. The reduction in losses results in lower GHG emissions per tonne produced.

Technical Application

To effectively implement continuous long-term use of cultural practices, the following steps, as part of the Integrated Pest Management (IPM)  should be carried out, but before taking any pest control action, IPM first sets an action threshold, a point at which pest populations or environmental conditions indicate that pest control action must be taken:

  • Step 1: Inspection. The cornerstone of an effective IPM program is a schedule of regular inspections. This should be regular to identify any new visitors to your crop.
  • Step 2: Preventive Action: regular inspections reveal vulnerabilities in your pest management program, steps can be taken to address them before they cause a real problem. One of the most effective prevention measures is exclusion, i.e., performing structural maintenance e.g by closing potential entry points revealed during inspection thereby physically keeping pests out and hence reducing the need for chemical control.
  • Step 3: Identification: Different pests have different behaviours. By identifying the problematic species, pests can be eliminated more efficiently and with the least risk of harm to other organisms. Professional pest management always starts with the correct identification of the pest in question.
  • Step 4: Analysis: Once you have properly identified the pest, you need to figure out why the pest is in your facility, e.g. food debris or moisture accumulation that may be attracting it? What about odors, through floors or cracks, etc.
  • Step 5: Treatment Selection: Cultural or IPM stresses the use of non-chemical control methods, such as exclusion or trapping, before chemical options. When other control methods have failed or are inappropriate for the situation, chemicals may be used in least volatile formulations in targeted areas to treat the specific pests- use the right treatments in the right places, and only as much as you need to get the job done.
  • Step 6: Monitoring: Constantly monitoring your facility for pest activity and facility and operational changes can protect against infestation and help eliminate existing ones. Your agricultural extension officer can assist you in technical advice to keep pests away.
  • Step 7: Documentation: Up-to-date pest control documentation is important and could include scope of service, pest activity reports, service reports, corrective action reports, trap layout maps, lists of approved pesticides, pesticide usage reports and applicator licenses
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Reduced incidence of pests and disease results in higher yields.
Increase Resilience
Healthier and more pest resilient farm and landscape. Prediction of pest outbreaks enables earlier management decisions.
Mitigate Greenhouse Gas Emissions
Reduced losses result in lowering GHG emissions per tonne produced.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_56_ContiniousLongTermProactivePractices_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • This practice increases yield production, improves soil erosion, enhances soil quality and biological diversity.
  • Reduces pollution of soil, water, allows for pollinating insects to thrive, encourages microbe activity in soil formation

Assists with mitigation of GHG emissions.

Drawbacks

  • Consistent management of pest monitoring, pest prevention and agro-ecosystem management.

Vaccination Campaigns

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Vaccination is the administration of immunisation injections to animals in order to prevent, control spread of diseases.  Vaccination campaigns involve administration of vaccine doses to a large population over a short period of time. The veterinary services departments or equivalent of respective countries normally gives free vaccinations to the farming community's animals for diseases which are of either economic significance to people's livelihoods or those that maybe of zoonotic importance (communicable to man from animals). These campaigns are usually fully funded by the government, NGOs to reduce disease outbreaks, prevent spread of an outbreak or improve national herd productivity, and are designed to reach as much livestock as possible. In most countries, free vaccinations are offer for the following diseases: Anthrax(-Cattle), Quarter evil or black quarter disease (Cattle), Contagious abortion (Cattle), Rabies (Dogs & Cats), Foot and Mouth Disease(Cattle)_ as per OIE designation in Disease Control Zones.

 For the message to reach farmers, community radios and involvement of traditional leadership can be used to encourage farmers to participate in vaccination campaigns.  This will help to gain trust and confidence from farmers for the campaign to be successful. Vaccination campaigns is a climate smart practice as it ensures a healthy population able to utilize feed efficiently with a reduced population discharge thus reduced GHG emission.

Technical Application

To effectively implement vaccination campaigns:

  • Step 1: Networks that notify farmers about upcoming vaccination campaigns must be established to promote the significance of vaccinating animals across the country. This can be promoted through government bulletins and community radio, utilising extension networks, village level administration, and traditional leadership.
  • Step 2: Vaccination parks for cattle can be set up by veterinary officials to restrain livestock movement that might increase disease spreading.
  • Step 3: Goats and sheep can be vaccinated at their locations where officials will move from one village to another to reach more population.
  • Step 4: Training of personnel is important to ensure that vaccination is carried out before seasonal outbreaks and prevent the spread of disease.
  • Step 5: Commence campaigns one month prior to the season when outbreaks are most common or upon notice of a disease incidence.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Reduces incidence of disease results in healthier, more productive animals.
Increase Resilience
Reduces risk of secondary infections in livestock. Sale of livestock is a common coping strategy so having more/better livestock to sell increases resilience.
Mitigate Greenhouse Gas Emissions
Livestock population with a potential for more efficient conversion of feed into meat/diary which can reduce emissions per unit production.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_55_VaccinationCampaigns_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • The objectives of vaccination campaigns are to reduce the number of animals that are affected by disease outbreaks and prevent treatable diseases from reducing national herd population which may affect farm income.
  • Awareness must be established in order to gain farmers trust and involvement for the campaign to be successful.

Drawbacks

  • No 100% guarantee of protection of animals/birds.
  • Postpone vaccination campaigns if an outbreak is in progress.
  • For ring vaccinations upon outbreaks, proper delineation of the perimeter is important.

Resistant Breeds

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Resistant breeds Disease resistance is the reduction of pathogen growth in or in a plant or animal; denoting less disease development in a particular breed than that which is relatively susceptible and is specific to a particular strain of disease or attribute. Breeding resistant breeds  . Resistance” means the animal actively fights infection by various means. Building resistant breeds can be done through selection. Selective breeding, sometimes called artificial selection, where different breeds of animals with desired characteristics or attributes like resistance to. drought, heat, cold, salinity, flood, submergence and pests can be developed by selective breeding and thus able to relatively thrive in some conditions which would otherwise not be able to, e.g. This assists in the reduction of diseases, results in healthier productive animals and reduces risk of secondary infections in livestock. These breeds create a potential for more efficient conversion of feed into meat or diary, and thus a climate smart attribute since by reducing emissions per unit of production (proportionately less faeces are dropped per unit consumption of feed) as well as contributing to food security.,. In the Southern African Development Community (SADC) region, local breeds are more resistant to many of the pests and diseases and may be the best option for some farmers in the Arid and semi-arid areas of the region.

Technical Application

To effectively implement resistant breeds:

  • Step 1: Breed livestock with increased resistance against pathogens or other environmental stressors (heat stress).
  • Step 2: Select animals of higher general disease resistance (resistance to several diseases) using a heritable indicator such as natural antibodies.
  • Step 3: Keep record of good performing animals; unhealthy or easily prone of weak animals should not be used for mating; males should be castrated leaving best specimen to breed in subsequent seasons.
  • Step 4: Breed or inseminate the selected cows with desired or selected bulls or semen of the desired traits.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Reduces incidence of disease, results in healthier, more productive/efficient animals.
Increase Resilience
Sale of livestock is a common coping strategy so having more/better livestock to sell increases resilience.
Mitigate Greenhouse Gas Emissions
Potential for more efficient conversion of feed into meat/diary which can reduce emissions per unit production, thus less GHG emissions.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_54_ResistantBreeds_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • With resistant breeds, selecting of male breeds is a long-term climate smart adaptation because they are likely the most resistant.
  • Farmers should identify females in heat and isolate them with selected male animals. This results in productivity increase, higher resilience and cost effectiveness.

Drawbacks

  • Breeding should be controlled to achieve best practice results and farmers should be able to detect when female animals are on heat.
  • Parental performance records should be kept at all times.

Biological Control Vectors

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Vectors are organisms that carry diseases from one living being to another without showing symptoms of the diseases themselves. Some of the most common forms of vectors are blood sucking insects such as mosquitos, fleas, lice, ticks and other similar insects, and rats/rodents. Places such as stagnant water and dumping sites can be ideal habitats for vectors to reside and transmit. The use of natural vector predators can help reduce or eliminate vector populations. The most common vectors in southern Africa are insects (tsetse flies-trypanosomiasis), animals (foot and mouth disease through cattle or people with contaminated shoes), tick-borne relapsing fever (TBRF) and Crimean-Congo haemorrhagic fever (CCHF).  Sanitising the life-cycle of vectors, implementing pest traps and introducing pest predators are means of reducing the spread of disease. The impacts of climate change, especially increased heavy rainfall and higher temperatures can encourage vector populations to grow quicker than normal. Simple strategies to control vectors includes keeping livestock surroundings clean, avoiding livestock access to stagnant water, fencing areas off, restricting animal access to certain locations, can all control biological vectors and assist in reducing vector spread.

Technical Application

To effectively implement biological control vectors:

  • Step 1: Research common vectors in the local area and ensure that farmers are informed about the kinds, description, lifecycle and common habitats of these vectors, such as tsetse flies, ticks, biting flies.
  • Step 2: Avoid allowing livestock access to dirty and damp environments as well as very bushy areas as these locations are common habitats for vectors.
  • Step 3: Use of traps or even introduction of vector predators to livestock to manage vector spread could be used. This could include introducing epsilon traps for tsetse flies to promote vector control.
  • Step 4: If rodents are found in or around livestock, introduce rodent control methods such as traps and/or rodent predators (cats, etc) and bury any remains far from livestock areas.
  • Step 5: Fence off areas of high vector prevalence, such as stagnant water, ensuring that livestock do not access these areas.
  • Step 6: Examine any rangeland to determine whether there are vectors in the vicinity such as biting insect, or locusts that may damage maize crops and fruit flies that damage tomatoes.
  • Step 7: Community radio can be an effective method for extension officers to inform communities about outbreaks, or impending infestations.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Reduces incidence of disease results in healthier, more productive animals.
Increase Resilience
Reduces risk of secondary infections in livestock. Sale of livestock is a common coping strategy so having more/better livestock to sell increases resilience.
Mitigate Greenhouse Gas Emissions
Potential for more efficient conversion of feed into meat/diary which can reduce emissions per unit production.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_53_BiologicalControlVectors_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Identifying the common vectors in the area is a key first step to understanding how to manage them.
  • Using vector traps and introducing vector predators can also help manage livestock exposure.

Drawbacks

  • Biological vectors transport disease that can have devastating impacts on livestock.

Species Diversification

Value Chain
Annual Average Rainfall
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Species diversification involves a shift from a single species of livestock to more species in an attempt to manage risk and explore more resilient livestock farming options. Species diversification can be introduced in response to changes in local environment/climate conditions, including increasing temperatures, unreliable sources of water and availability of pasture, etc. The aim of this approach is to explore the introduction of species that may be more viable and adaptable in changing local conditions thus improving production levels by keeping animals that will be productive under harsh weather conditions and sustain the quality of the produce. Diversification as a climate smart practice assists farmers with utilising available resources more effectively, e.g. mixing grazers and browsers. Species that react well to changing climatic conditions may cause a shift of demand from grazers to browsers. This practice mitigates disease control, can improve soil fertility and increase water management. Government policies can also influence farmers in diversifying their species with many countries dedicating agricultural research and extension to explore the introduction of different species (e.g. cattle to goats) to assist farmers. It is important that species that are introduced do not have an adverse impact on local fauna or the surrounding environment.

Technical Application

To effectively implement species diversification:

  • Step 1: Research possible species of livestock that may be productive in the climate of the surrounding area and compatible with existing livestock.
  • Step 2: Communicate with national agricultural extension/neighbouring farmers and research to gain an understanding of which breeds have been identified as having potential locally and which are available in the region. Other farmers in the area may have information and experiences to share.
  • Step 3: Inform neighbouring farmers of the potential species that they may be interested in including into their farming system.
  • Step 4: Outline the positive and possible negative aspects of incorporating different species into their system.
  • Step 5: Identify how farmers can access different species and whether they are available at local markets or if these species need to be imported from other areas of the country/region.
  • Step 6: Monitor introduced species to ensure that impacts – positive and negative – are understood.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Utilises available resources more effectively to maintain agricultural productivity.
Increase Resilience
Diversification can be an adaptation strategy, identifying species with beneficial traits under changing climate conditions.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_52_SpeciesDiversification_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Species diversity can assist farmers become more climate resilient by adjusting livestock holdings more adaptable species (camels, goats, etc) as other species can survive on less water and lower feed demands.
  • Diversification may have significant impacts on household food security, income and be more productive.
  • Different species may have traits that are more adaptable to harsh conditions including temperature increases, resistance to disease, drought tolerant, allowing more sustainable productivity (continue to produce milk, eggs meat etc.) and staying in line with market demands during harsher conditions.

Drawbacks

  • Introduction of exotic species can have negative impacts and may push traditional breeds out or have adverse effects on local fodder, water sources etc. if not managed correctly.

Cut and Carry

Value Chain
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Cut and carry is the agricultural practice of cutting and carrying fodder crops away from the field that they are grown in to feed to livestock. Fodder trees, shrubs or grasses are sources for livestock feed in this practice. Cut and Carry is a key CSA practice where overgrazing is a problem. This practice takes pressure off grazing land at critical periods, reduces land degradation caused by livestock and increases soil organic matter, while still feeding livestock for productive outcomes. This practice can also be used in more intensive livestock production where livestock are kept housed for periods stretching from half a year to a year and improved nutrition is required. However, fodder production can be costly in terms of cultivation, requiring significant management over and above the livestock themselves. Fodder is collected from sites where it grows naturally, or it can be grown in fodder banks, hedges, boundaries, etc. Feeding livestock using this approach can ensure the supply of a large quantity of high quality and palatable fodder within a short time, as well ensuring soil is not disturbed through open grazing systems, thus a good CSA practice. It can be adapted to the farmer’s needs and can provide a way of introducing the farmer to the concept of improving livestock at the same time as conserving soil.

Technical Application

To effectively implement cut and carry systems:

  • Step 1: Cut and carry commences with the cutting of the crop.
  • Step 2: Cut crop when plants are fully mature (vegetative growth and plant sugars are at their peak). This ensures that protein, digestible energy and dry matter percentage are at their highest potential.
  • Step 3: Fodder can be fed directly or dried as hay or preserved as silage to conserve its value and be fed to livestock during the dry season or other critical times throughout the year.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Fodder can be harvested on multiple occasions during times of plenty and preserved for later, rather than leaving as standing hay.
Increase Resilience
Reduces pressure of grazing by limiting period livestock tread on land causing denudation at critical periods (with less cover).
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_46_CutAndCarry_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Improves fodder production and farm income.
  • Growing fodder crops in rainy seasons encourages fodder conservation for dry season feeding.
  • Can be combined with crop rotation and intercropping to form part of positive farm management practices.
  • Cut and carry can relieve pressure from pasture and grazing land, contributing to control of over-grazing, while improving soil quality.
  • Can create job opportunities and income generation for youth farmers.

Drawbacks

  • The practice will require additional labour resources.
  • Can be costly in terms of management.
  • Farmers must have enough land to grow fodder on or have access to communal land.
  • Soil condition in the fodder fields must be carefully monitored to ensure that soil nutrients aren’t depleting.
  • Fodder storage must be monitored to ensure bacteria and mould do not affect the quality of feed.

Farmer Managed Natural Regeneration

Value Chain
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Farmer Managed Natural Regeneration (FMNR) is a technique of restoring degraded land and monitoring restoration of the land involving the systematic regeneration and management of trees and shrubs from tree stumps, roots and seed. Degraded arid land often features left over indigenous plants, which if maintained and promoted to grow can improve pasture and crop lands while simultaneously encouraging re-growth of seeds, roots and shrubs. Key to this practice is the existence of living stumps, tree roots and seed that, if encouraged, will regrow. The land is protected from being completely cleared or further grazed and this allows trees to grow without disturbance. Once the stumps and trees start to grow, pruning and trimming of trees is required to allow space between trees and promote healthy long tree trunks. Once the trees have matured, intercropping can take place or livestock can be re-introduced to graze.

While requiring some investment in terms of effort, FMNR has climate smart advantages such as controlling rainfall/irrigation run-off, supporting water quality improvements, providing sources of timber or fodder, supporting habitant regeneration for pollinator insect species, acting as sun shade, and reducing soil erosion.

Technical Application

To effectively implement Farmer Managed Natural Regeneration:

  • Step 1: Degraded land needs to be identified and living stumps, roots and seeds need to be encouraged to regrow. This may include periodic watering. Focus should be on indigenous species, and present tree species (existing stumps).
  • Step 2: Consider leaving the field un-grazed to promote tree growth.
  • Step 3: Select tree stumps and the tallest and straightest stems to grow into trees.
  • Step 4: Prune and manage by removing stems and unwanted side branches.
  • Step 5: Maintain the process by occasionally pruning side branches.
  • Step 6: Manage the land consistently to avoid overgrazing, which can lead to further degradation.
  • Step 7: Consider rotational grazing to allow seeds, stumps and underground shrubs to re-grow. This will reduce the cost of replanting. Shrubs and growing trees and saplings need to be protected before introducing livestock. Shrubs and growing trees and saplings need to be protected before introducing livestock.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Increase availability of biomass, which improves soil fertility and thus production. The trees/shrubs can be a source of income and reduce costs.
Increase Resilience
Reduces erosion of soil and evaporation. Increases water retention and infiltration. Diversifies income sources. Improves yield stability.
Mitigate Greenhouse Gas Emissions
Locks more carbon in plants and in soil.
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_35_FarmerManagedNaturalRegeneration_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • FMNR improves soil quality and reduces soil erosion.
  • Improved dry-season pasture.
  • Agricultural management practices such as pruning, and trimming are carried out appropriately in turn improving growth and air circulation.
  • Higher livestock productivity.
  • Provides protection from wind and shade for livestock, when introduced.
  • Increased availability of firewood, thatch and other non-timber forest-products/materials.

Drawbacks

  • The land needs to be managed consistently to avoid overgrazing.

Permeable Rock Dams

Value Chain
Annual Average Rainfall
Soils
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

A permeable rock dam is a water harvesting technique where flooding rain water is collected in valley bases or other depressions to irrigate crops later/elsewhere, filling in gullies, controlling water flows, increasing crop production and reducing soil erosion.. Permeable rock dams are long and relatively shallow to reduce erosion while accumulating silt and distributing water. They comprise of long low rock walls with smooth crests so that water can spread to avoid overflow from the dam. However, this technology is site specific; it cannot be practiced in areas where there are no rocks/stones and means of transporting these building materials. The impoundment of silt prior to runoff entering a watercourse can be beneficiary to downstream users and can contribute to improved water quality in the catchment

Technical Application

To effectively implement Permeable Rock Dam practices, the following steps should be carried out:

  • Step 1: Consider constructing a permeable rock dam across relatively wide and shallow valleys.
  • Step 2: Permeable rock dams should consist of long, low rock walls with level crest along full length although farmers should consider central spillways where water course has cracks.
  • Step 3: The dam should be between 50-300m in length and 1m in height within a gully.
  • Step 4: Consider making the dam wall flatter on the downslope side than on the upslope side.
  • Step 5: A foundation of small stones should be set in the trench.
  • Step 6: An apron of large rocks is essential to split the erosive force of the overflow.
  • Step 7: Downstream banks of the water stream should be shielded by stone pitching to prohibit the increase of the gully.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Erosion Control
Increase Production
Supports agricultural productivity as soil structure is retained and provides access to more sustainable water supplies.
Increase Resilience
Supports adaptation strategies in climate changes scenarios with improved access to water for irrigation and reducing soil erosion.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_29_PermeableRockDams_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Permeable rock dams increase crop production.
  • Reduce soil erosion.
  • The system increases groundwater recharge.

Drawbacks

  • The technology is site specific; should be on a site where rocks and stones are present.
  • Need for large quantities of stone.
Subscribe to Long

Funding Partners

4.61M

Beneficiaries Reached

97000

Farmers Trained

3720

Number of Value Chain Actors Accessing CSA

41300

Lead Farmers Supported