Skip to main content

Integrated Pest Management

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Integrated Pest Management (IPM) is the careful consideration of all available pest control techniques and subsequent integration of appropriate measures that discourage the development of pest populations and keep pesticides and other interventions to levels that are economically justified and reduce or minimise risks to human health and the environment, focusing on all practical options for reducing or eliminating pesticides. The practice of IPM for crop protection is widely encouraged, as the practice can enhance crop production and reduce risks associated with use, storage and management of pesticides. The integrated nature of this approach ensures that it is climate smart, as it utilises the best possible options to ensure sustainable productivity, which will in turn allow adaptation to climate change. However, as it may require the use of pesticides as one strategy, the climate-smartness may be affected.

Technical Application

To effectively leverage integrated pest management:

  • Step 1: Identify damage and responsible pest. Regular crop monitoring is important, to ensure early identification. Bottle traps are useful for capturing samples to examine and identify a pest.
  • Step 2: Learn about the pest and host life cycle and biology.
  • Step 3: Monitor or sample environment for pest population.
  • Step 4: Establish action threshold. If aiming to tackle weed infestation, intervention must occur before the weed matures and begins spreading seeds. Some thresholds are high. For example, if dealing with caterpillars, soya beans can tolerate a certain level of defoliation without it impacting crop yield.
  • Step 5: Identify IPM response tactics.
    • Cultural methods –planting crops that are adapted or suited to conditions and responding to their water, nutrient and shelter needs.
    • Physical methods – mechanical weeding, such as mechanical weeding or using organic or plastic mulch to cover the ground to reduce weed presence/success.
    • Genetic methods – selecting modified or adapted pest-resistant varieties.
    • Biological methods – using natural predators, push-pull approaches, intercropping, etc. and use of use of organic pesticides.
    • Chemical methods – considering all levels of toxicity – from pheromone deterrents to conventional pesticides.
  • Step 6: monitoring for ongoing efficacy, and adjustment of tactics where relevant/necessary.  Aiming at all times to use chemical pesticides rationally and as a very last resort.

In the cases where chemical pesticides are used as part of an IPM strategy, the Agri-Intel website is an invaluable resource, which provides detailed chemical management advice: https://www.agri-intel.com.

Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Practical reduction or elimination of pesticide use reduces or removes the contribution to greenhouse gas emissions.
Increase Resilience
Practical reduction or elimination of pesticide use reduces or removes the contribution to greenhouse gas emissions.
Mitigate Greenhouse Gas Emissions
IPM maximises opportunities for agricultural productivity while minimising or eliminating the use of pesticides.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_65_IntergratedPestManagement_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • IPM is the agricultural practice of combining several practices to maximise benefits.
  • Pesticides are used following the safety information given on the packaging, when other approaches are not effective

Weeding by Hand/Hoe

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

A weed plant is an unwanted plant that grows among and competes with crops for water, air, sunlight, nutrients and space. The removal of such plants from fields – known as ‘weeding’ - is vital to enhancing crop growth. They can be removed by cutting their roots either by hand or using an implement such as a hoe. Some cereal crops like rice and maize attract weeds that are herbicide resistant; hence, the use of a hoe in removing the weeds is the most effective practice. However, as mechanic weeding can result in release of weed seeds into the soils as the hoe makes contact with the plant, weeding by-hand is the best way for weed removal to prevent weed seeds from falling onto the ground for further germination; this can increase the labour intensity of weeding considerably. This is a climate smart practice as it mitigates the emission of greenhouse gases from herbicides into the atmosphere, land and water systems. Furthermore, weeding helps maintain sustainable agricultural productivity, when considered an integral part of farm management and operations. However, weeding has been identified as one of the largest labour inputs for subsistence agriculture, accounting for between 30 and 50 % of on-farm labour requirements.

Technical Application

To effectively implement  mechanical weeding:

  • Step 1: Farmers should be able to identify weeds resistance to herbicides.
  • Step 2: Examine fields to understand level of weed infestation – can they be easily and effectively removed using a hoe, without spreading seeds, or will manual weeding be necessary.
  • Step 3: Attempt to quantify the amount of labour needed. Can the work be completed by the adults on the farm, or will additional labour be required? Will youths be involved in weeding? Will they miss school?
  • Step 4: Begin removal of weeds, ensuring that weeds are uprooted and removed from the field to avoid regeneration. A hoe must have a long handle to be able to work effectively and the hoe blade must not be too sharp in order to cut weeds without going through crops and spreading seed and cuttings.
  • Step 5: Weeding should take place a minimum of three times over the growing season – one week before planting crops, three weeks after planting (when the crop has two to three leaves), and two months after planting (milk-stage ). The aim is to reduce or eliminate the product of seeds in the weed plants.
  • Step 6: Draft animal-drawn cultivators can reduce labour requirements but should only be used to cultivate soil to a shallow depth, retaining soil structure, but not disturbing soil. Weeds should be collected by hand afterwards. Deeper tilling or turning of the soil with the wrong implement may cause more harm than good.
  • Step 7: Weeding must be sustained year on year to reduce prevalence. It is important to caution farmers that results may not be seen in significant reduction of plants until year-two of a weeding programme.
  • Step 8: Obnoxious weeds – such as Striga, etc – should be burned once pulled, preferably away from the field, in order to eradicate their presence.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Weeding by hand is an effective method of controlling weeds, and ensuring maximum productivity.
Increase Resilience
A regular and diligent weeding strategy will maintain productivity in a changing climate.
Mitigate Greenhouse Gas Emissions
Mitigates emission of greenhouse gases from release of herbicides into the atmosphere.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_60_WeedingbyHandHoe_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Weeding can reduce competition for crops in terms of water, air, sunlight, nutrients and space, making a crop more productive.
  • Weeding is cheaper than the use of herbicides.
  • Weeding by hand or hoe reduces the use of chemicals however, it is as effective as using herbicides.
  • Some weeds produce noxious gases which can have negative impacts on crop growth.

Drawbacks

  • Some of the cereal crops attract weeds that are resistant to herbicides.
  • Manual and mechanical weeding can be physically demanding and may require additional labour resources for larger fields.
  • Manual weeding requires approximately 25 % more labour than using herbicides.

Short Term Reactive Practices

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Short-term reactive practices are control options for pests and diseases once they have reached a level where the economic losses are likely to be greater than the cost of controlling the pest/disease outbreaks and can be used to maintain or increase production. Pests and diseases are better detected at an earlier stage to make it easier to act and prevent severe crop losses and prohibit the spread of pests and diseases throughout the whole field, achieved through regular and systematic field inspections. The practice is considered climate smart as it reduces losses, which in-balance lowers greenhouse gas emissions per tonne of crop produced, it retains agricultural productivity through management of pest infestation and/or disease outbreaks, and is applicable as it can assist farmers adjust to changing climate, and the threat of new and changing pest diseases.

Technical Application

To effectively implement  short term reactive practices:

  • Step 1: Inspecting the crop regularly and systematically by walking through the field following an M-shaped pattern will ensure that the farmer does not just look around the edges, but also inspects in the middle of the field.
  • Step 2: Farmers should carefully examine the crops for any signs of pests/diseases. They may be able to identify the presence of pests or disease through observing the following:
    • If the plant is wilted.
    • Are the leaves more yellow than usual?
    • Are the crops smaller than usual?
    • Do the leaves have spots?
    • Have parts of the plan died?
  • Step 3: Once the foreign specie has been identified, the farmer should employ a method to eradicate the issue thoroughly and immediately.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Reduced losses result in lower GHG emissions per tonne produced.
Increase Resilience
Reduces losses due to management of pest/disease outbreaks.
Mitigate Greenhouse Gas Emissions
Farmers can make informed decisions resulting in sustainable losses.
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_59_ShortTermReactivePractices_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Short term reactive practices eradicate the pest or disease.
  • The aim is to protect the long-term health of the field/herd for the next season or growing period.

Drawbacks

  • Pests and disease can have devastating impacts on both crops and livestock and can persist throughout growing seasons.

Push and Pull Systems

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

A push pull system is a technique that repels parasitic plants and pests that attach themselves to the crop roots and feed on them.. In push-pull, a cereal crop is intercropped with a leguminous plant like desmodium or molasses grass, while a popular fodder crop, Napier grass, is planted as a border around the field. Desmodium produces volatile chemicals that attract predators of the cereal e.g of maize pests. More importantly, by giving a false distress signal to the moths that the area is already infested, these chemicals ‘push’ the egg laying moths away from the crop to seek out habitats where their larvae will face less competition for food. Napier grass also produces volatile chemicals that ‘pull’ the moths towards them, and then exudes a sticky substance that traps the stem borer larvae as they feed. Few larvae survive. Napier grass attracts stem borer predators.  The intercropping is a climate smart practice as it mitigates emission of Greenhouse gases through the reduced need for pesticides. The push-pull system improves food security and boosts farm income.

Technical Application

To effectively implement  push and pull systems:

  • Step 1: Plant Napier and a legume like Desmodium or molasses grass  between every three rows of maize/sorghum as barriers to repel stemborers away from crops.
  • Step 2: Plant the Desmodium first as soon as the rains begin, so it immediately repels the stalk borers before the maize/sorghum emerge.
  • Step 3: Plant three rows of Naiper grass around the borders of maize field.
  • Step 4:  Allow pest enemies such as ants and spiders to enter the field to feed on stemborers.
  • Step 5: Cut grass and fed to animals as forage.
  • Step 6:  Abandon areas that are heavily affected by stemborers until treated.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
A push-pull system supports sustainable productivity by reducing the need for expensive pesticides, and boosting farm income.
Increase Resilience
A sustainable and environmentally friendly method for maintaining soil health and productivity while controlling pests.
Mitigate Greenhouse Gas Emissions
Reduced application of synthetic fertilisers reduces greenhouse gas emissions.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_58_PushandPullSystems_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Reduces the need for pesticides.
  • Improves food security and boost farmers’ income.
  • The green technique deals with trapping the pests (pull) and repelling them (push) by planting Napier and desmodium or molasses grass next to cereal crops.
  • The relationship between insect-plant and insect-insect (introducing pest enemies such as ants/spiders) is achieved in order to kill stemborers.
  • Grass planted next to crops can be salvaged and used as forage.

Drawbacks

  • Naiper grass take up space on the field.
  • Cost and lack of availability of Desmodium seed.
  • Difficulty in establishing the Desmodium crop, hence practice not suitable for all farmers.

Resistant Varieties

Value Chain
Annual Average Rainfall
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Resistant varieties are new crop varieties that improve yield production, are resistant to pests and diseases, more tolerant to drought, salinity or other changing or undesirable environmental conditions. Crop plants used within this practice are usually only resistant to a limited number of undesirable characteristics e.g. pests or drought – but usually not both, and some other desirable traits may be lost while others may be strengthened. Hence, careful selection of candidate species must be undertaken. Resistance varieties common in southern Africa include drought resistant maize, sorghum, rice and cowpea (beneficial legume for intercropping) strains, striga (witch weed) resistant sorghum and maize strains, and others all help farmers adapt to changing climate conditions, by being able to farm crops that survive the increasingly variable climate, which can result in less rainfall, or the presence of new pests. Striga results in crop losses totalling over USD 1 billion per year, whereas research has shown that planting climate resilient maize varieties can lead to up to a 25 % increase in crop yields.

Exploring new pest or drought resistant varieties in a regional will require demonstration and testing in ‘test plots’, so extension workers can ensure that the outcomes are aligned with farmers wants/needs/tastes, and so farmers are familiar with the new varieties before they are mainstreamed. Acceptance of new varieties, and any changes is traits will be critical, as resistant varieties is a key intervention for climate adaptation in southern Africa, as they will allow farmers to remain productive for longer under challenging conditions, and while different crops altogether are investigated.

Technical Application

To effectively leverage resistant varieties, the following should be carried out:

  • Step 1: Survey farmers and meet with other local and national level extension officers to determine key interventions required – drought tolerance, prevalence of certain pests, etc.
  • Step 2: Research and meet other local extension officers to discuss best methods applied to the agricultural practice of resistant varieties in the region.
  • Step 3: Talk to the agricultural dealers and seed manufacturers about the varieties being offered and their characteristics.
  • Step 4: Talk to the agricultural research departments about best opportunities under climatic change in your specific area.
  • Step 5: Either independently or in partnership with seed manufacturers, establish test plots of viable resistant varieties in key locations to act as demonstration plots for farmers to visit, observe growth and harvest, and test the outcomes. Many conditions may come into play when attempting to mainstream resistant varieties, including visual aspects, harvesting and processing differences, palatability and taste, etc. All of these issues must be discussed with farmers during testing and roll-out to ensure resources are not wasted with varieties that will fail.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Reduced incidence of pests and disease results in higher yields.
Increase Resilience
Healthier and more pest resilient farm and landscape. Prediction of pest outbreaks enables earlier management decisions.
Mitigate Greenhouse Gas Emissions
Reduced losses result in lowering GHG emissions per tonne produced
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_57_ResistantVarieties_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • The practice is widely used to increase yield production, produce pest and disease resistant varieties and improve environmental tolerance.
  • Further combines the best traits of the parental forms resulting in some strengths and weaknesses, resulting in a variation of crops species.

Drawbacks

  • May require investment and/or access to credit, as new seeds will not be in farmer seed banks/stores and may be expensive to kick-start implementation.
  • May take time to launch new varieties and gain acceptance from farmers/consumers/markets.

Hybridisation Traditional Breeds

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Hybridisation is the agricultural practice of genetically manipulating flora and fauna that differ in heredity. Hybridisation and mutations are the main source of hereditary variation and can result in the increased growth rate, manipulated gender ratios, increased yields, sterile animals, improved flesh quality, increase disease resistance and improve environmental tolerance. Intraspecific hybridisation method is used for livestock breeding whereby individuals of different breeds or strains are mated. Distant hybridisation for livestock is difficult to accomplish as hybrids are usually sterile. Hybrid animals are extremely difficult to produce and specialists often spend their careers attempting to create a new breed of animal. Hybridisation is plant species is more common and has a greater success rate than animal species, however successfully creating a hybrid species remains difficult to achieve. Specialists are trained on the gene sequence and different methods for accomplishing hybridisation. The development of hybrid flora and fauna is often undertaken to address a problem or issue. For example, to address socio-economic challenges agricultural researchers may attempt to produce a species of chickens who lay lager eggs or cows who produce more milk. Hybridisation is also applied to address the challenges of a changing climate including producing crops that are more drought resistant. Due to the research and development of these hybrid species they are expensive to access and often not available in remote areas. Traditional breeds are pure individual species with no DNA alterations. They are often endemic to an area and because of this have evolved and adapted to the geophysical area they are found. Thus, traditional breeds are often found in certain areas, and through traditional knowledge have been incorporated into local farming systems for generations. With an increasingly globalised world, it is difficult to maintain distinct traditional breeds as trade in species, seeds etc. is increasingly prevalent. However, with a new focus and dedication of farmers and researchers to explore indigenous knowledge there is an increased focus on reinvigorating the incorporation of traditional breeds of both flora and fauna.

Technical Application

To effectively leverage hybridisation:

  • Step 1: Contact national extension and research as they are often working on developing new species of flora and fauna to meet local challenges including climate variance and introduce them to local farmers.
  • Step 2: Research best methods applied to the practice of hybridisation in the region.
  • Step 3: Meet with national agricultural extension and research staff as well and local breeders to determine desirable characteristics and possible  crossing of livestock differing in heredity. For example, the mating of two different goat breeds to obtain an improved breed.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Increased the milk yield or weight gain of animals, thus increasing the amount of food that farmers can produce within available resources.
Increase Resilience
Breeding for resilience to: Pests/disease; and Heat and drought
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_49_HybridisationTraditionalBreeds_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • This agricultural practice is widely used in breeding to increase growth rate, manipulate sex ratios, produce sterile animals, improve flesh quality, increase disease resistance and improve environmental tolerance.

Drawbacks

  • This agricultural practice is widely used in breeding to increase growth rate, manipulate sex ratios, produce sterile animals, improve flesh quality, increase disease resistance and improve environmental tolerance.

Manure Collection, Storage and Treatment

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Manure is organic matter that is used as an organic fertiliser in agricultural practices, conditioning and adding nutrients to soil, generally derived from animal faeces. Manure is the best source of fertiliser available to a farmer, as it can be readily available from livestock, and it a more environmentally friendly option over synthetic fertilisers. Animal manure, compost and green manure are the three different types of manure used in soil management. Manure is collected in different forms: liquid manure, slurry manure or solid manure, and treated in different systems depending on its state. Liquid and slurry manure are stored in liquid (slurry) manure storage systems whereas solid manure is stored in sacks in order to allow air and toxic vapours to move in and out, as well as to maintain the moisture content. The manure is collected and treated (as described below) in order to kill pests that may feed on crops during the application period. The manure is further cleaned to remove unwanted substances such as sticks, and large lumps formed in the manure.

Technical Application

To effectively implement manure collection, storage and treatment:

  • Step 1: Use gloves before handling animal manure from any livestock.
  • Step 2: Use shovels and wheel barrows to load and transport the material.
  • Step 3: Store manure in a contained area, with a solid bottom (cement pad) to prevent runoff and leaching into local waterbodies or groundwater.
  • Step 4:  Mix all types of manure with organic substances such as vegetable waste, garden debris, dead leaves, sawdust, wood ash, hay and straw etc. to add structure and other organic compounds to the soil.
  • Step 5: Turn mixed manure over regularly to allow for combining of nutrients and further aeration.
  • Step 6: Cut-up large particles of animal manure to no more than 10 cm in size.
  • Step 7: Spread manure evenly on field a few weeks prior to planting or during planting. It can also be applied in micro-doses around crops and trees directly.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Organic matter in manure can be used to fertilise crops, improving soil health and productivity.
Increase Resilience
Manure collection and management can contribute to crop production.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_48_ManureCollectionStorageAndTreatment_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • The use of manure helps to maintain the organic-matter content of the soil, which can improve soil structure, increases nutrient availability and crop productivity.
  • An additional benefit is that it increases soil carbon and reduces atmospheric carbon levels.
  • Manure application can be spread across fields or in micro-doses.

Drawbacks

  • Manure leachate can carry concentrated ammonia and other potentially harmful organic compounds. Therefore, it should be contained in one area to prevent possible negative environmental impacts from runoff.

Rotational Grazing

Value Chain
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Rotational grazing is a practice of moving livestock between different units of pasture in regular sequence to allow the recovery and regrowth of pasture plants after grazing. This facilitates management of the nutritional needs of the various types of livestock whilst maintaining pasture productivity. Management of intensive grazing/controlled grazing is a climate smart practice as it results in improved forage harvest, soil fertility, resistance to drought, reduced pasture weeds establishment, reduced wastage of forage and soil compaction.

Rotational grazing can also be combined with cut and carry approaches - when managed correctly; rotational grazing can provide enough forage growth early in the grazing season for producers to harvest feed for later use in some paddocks as rotation continues. Farmers can use temporary fence systems to manage the size of, and access to pastures.

Technical Application

To effectively carry out rotational grazing practices:

  • Step 1: Plan livestock grazing system, based on livestock types, stocking density, pasture crop hardiness and production, rainfall, soils and available alternative pasture fields and space, focusing on the nutritional and forage needs of the animals.
  • Step 2: Use temporary electric fence systems to manage the size of the paddock.
  • Step 3: Move livestock between paddocks every set number of days (two days; one week; one month).
  • Step 4: Assess forage quality and quantity, regulating the acreage of access and control by implementing the electric fence system, which uses electrified fencing to determine which parts of the pasture that the livestock will access.
  • Step 5: Monitoring efficacy of the system, changing rotation periods and extend recovery time for grazed land, if land becomes degraded.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Increased and more productivity per unit area.
Increase Resilience
Gives land time to recover after grazing and hence, being more resilient to extremes.
Mitigate Greenhouse Gas Emissions
Increases vegetation cover and soil organic matter and locks carbon.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_47_RotationallGrazing_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Controlled rotational grazing is an effective conservation practice to apply that improves animal management, increases soil fertility, forage productivity, and reduces soil nutrient depletion and soil erosion.

Drawbacks

  • Appropriate land access is a issue, with farmers requiring substantial land or approval and agreement from the community to operationalise the approach.

Fodder

Value Chain
Soils
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Fodder is the agricultural term for animal feed. Fodder trees and shrubs play an important role in bridging the gap between livestock feed requirements and the low quality and quantity of feeds available to many farmers. As well as providing feed or acting as a feed supplement for livestock, fodder trees and shrubs supply other benefits, such as firewood and erosion control. Fodder trees are either grown in-situ, from seed, and others are planted in nurseries and then transplanted to the field at the beginning of the rainy season. The transplanting method can be more successful than the direct planting - as high as 34 % better, but with a 24 % increase in cost per plant. Benefits of using fodder trees and shrubs as a dietary supplement include improved growth, health and reproductive capacity, and increased milk and meat production, mostly through increased protean uptake. Fodder trees and shrubs can be planted as living fences, field boundaries and in tree/shrub plantations. Popular species include African acacias, and Atriplex nummularia, Cassia petersiana, C. mopane, D. cineria, F. albida, Julbernadia paniculata, P. reclinata, Piliostigma thonningii, Swartizia madagascariensis and Trema orientalis.

Farmers of all categories can use this climate smart sustainable approach to produce both livestock and field crops to obtain improve benefits, improving nutrition for livestock animals, improving soil health, reducing cost of livestock feeding, and as a result increasing income

Technical Application

To effectively carry out fodder tree-shrub production using a nursery environment – a covered or exposed separate planting area, often close to the farm so saplings can be tended easily - consider the following steps:

  • Step 1: Identify one or more suitable species for fodder production, looking at suitable climatic, soil requirements, nutritional value and palatability, also considering source-plant (for cuttings) or seed availability.
  • Step 2: Take cuttings of up to *1 metre in length from mature trees, cutting at an angle. Cutting should be planted within three days, and if transported, cutting end should be covered in wax or petroleum jelly.
  • Step 3: Cuttings should be planted in 10 to 15 cm of soil either directly where they will grow or shallower in polythene planting cups.
  • Step 4: Fodder crops should be planted as the rainy starts, providing sufficient water and mobilising enough nutrients to assist rapid growth.
  • Step 5: Harvesting is again species specific*, and it is important to determine if drying prior to feeding, affects palatability or nutritional value.
  • Step 6: Harvesting frequency should also be determined independently*as plants mature to ensure sustainable production that does not stunt long-term growth and productivity.
  • Step 7: The farmer should consider how much fodder needs to be consumed immediately, how much dried as hay, and how much chopped and compressed to make silage.

Length of cutting, period prior to transplantation, and harvest quantities vary from species to species. Seek guidance from an agroforestry specialist or farmers that have experience with the process when selecting species, and how specifically to plant, manage and harvest fodder crops. An important element to understand is the volume of tree or shrub-based fodder each animal will require.

Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Higher meat and/or diary production per unit area of land.
Increase Resilience
Diversification of diet can mitigate the effects of drought on availability of fodder in pasture/ rangeland. Co-benefits in improving soil fertility and reducing erosion.
Mitigate Greenhouse Gas Emissions
Woody shrubs and trees lock carbon.
Additional Information
  • Franzel, S., Carsan, S. Lukuyu, B, Sinja, J. Wambugu, C. 2014. Fodder trees for improving livestock productivity and smallholder livelihoods in Africa. Current Opinion in Environmental Sustainability. 6
  • World Agroforestry Centre, 2019. Fodder.
  • Smith, O.B. 1994. Feeding fodder from trees and shrubs: Better Farming Series No. 42. Food and Agriculture organisation of the United Nations. Rome, Italy.
  • Karanja G.M. and C.M. Wambugu 2004. Fodder Trees for More Milk and Cash. Ministry of Agriculture (Kenya)/Kenyan Agricultural Research Institute, Nairobi, Kenya.
  • Chakeredza, S., Hove, L., Akinnifesi, K.K., Franzel, S., Ajayim, O.C., and Sileshi, G., 2007.Managing fodder trees as a solution to human–livestock food conflicts and their contribution to income generation for smallholder farmers in southern Africa. Natural Resources Forum 31 286–296
  • Steven Franzel, S., Carsan, S., Lukuyu, B., Sinja, J. and Wambugu, C.2012. Fodder trees for improving livestock productivity and smallholder livelihoods in Africa. Current Opinion in Environmental Sustainability, 6.
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_44_FodderShrubsTrees_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Fodder trees and shrubs can be highly beneficial sources of feed and nutrition for livestock, augmenting, or completely replacing traditional grazing.
  • Can be utilised when over-grazing has occurred, to allow range land to regenerate.
  • Fodder trees and shrubs add vital nutrients to the soil.
  • Fodder trees and shrubs can provide other benefits, including acting as living fences, and wind-breaks, as well as supplying firewood.
  • Crop rotation is important and fodder crops often act as nitrogen fixers (legumes) as well.
  • Fodder crops can also act as cover crops protecting and maintaining soil quality.

Drawbacks

  • Growing fodder can be laborious.
  • The number of fodder trees and shrubs may be extensive, therefore sufficient land is required.
  • Not only does the gathering of fodder require additional labour, but the harvested crop also requires management.

Carrying Capacity Improvement

Value Chain
Annual Average Rainfall
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Carrying capacity defines the number of Animal Units (AU; head of cattle or number of sheep, goats or other animals) that can graze in a rangeland unit without exhausting the vegetation and soil quality – essentially optimally utilising resources. Optimum carrying capacity is where a given unit of rangeland can support healthy populations of animal species, while allowing an ecosystem to regenerate, thus creating a sustainable balance. The stocking rate - defined as the number of animal species grazing a unit of rangeland for a limited period - must be kept fixed on an average year, meeting the carrying capacity to allow regeneration, the fallen seeds to rejuvenate and the soil to recover. However, stocking rates can fluctuate depending on the nature of the vegetation, rainfall variability, herd composition and management system. If the conditions are not favourable for vegetation growth during drought season, the number of livestock or the grazing period must be adjusted to avoid overgrazing. Moreover, the purpose of livestock keeping, i.e. for milk, meat, or wool production, will determine the carrying capacity of a rangeland unit. Factors such as climatic zone, rainfall dependency, class of livestock (steer, dry cow, calves, lactating cow and bull, etc), health of grassland and animal species affect the stocking rate. While relevant in all climatic zones, it is more applicable in arid and semi-arid zones where rainfall is most scarce. This climate smart practice increases production (meat/dairy), increases pasture resilience to extreme climate hazards (drought) and enhances soil fertility.

Technical Application

To effectively implement Carrying capacity improvement:

  • Step 1: There is no standard equation to determine the carrying capacity of an area, as many variables apply and factors relevant within each context including size of land unit, amount, frequency and timing of rainfall seasons, type of vegetation, species of animal, etc.
  • Step 2: Extension officers should aim to support farmers to continuously monitor rangeland status and realise the impacts of over-grazing and the benefits of finding an equilibrium.
  • Step 3: Constant monitoring of the pasture and animals must be carried out throughout the year to check if stocking rate aligns with the carrying capacity of the land unit. If land degradation is identified, adjustments to stocking rates should be considered, in the context of season and landscape regeneration.
    • For communal grazing land, it is ideal to use Animal Units (AU) to calculate the relative grazing impact of different kinds and classes of domestic livestock and/or even common grazing wildlife species for one month (AUM = Animal Unit Months). This information should support collective decision-making regarding rangeland resources.

        Using a conversion table of, the AUE (Animal Unit Equivalent) and the formula:

        1) multiply the number of animals to be grazed on the pasture by AUE to determine total AU, then

        2) multiply the total AU by the number of months planned to graze (see formula below or

        Worksheet A of the Range Calculator).

        Formula: _____________ x _____________ = _____________ x _____________ = _____________

                        # Animals         AUE(table)     Animal Units (AU)   Months (M)           AUM

  • Step 4: One option for effectively responding to carrying capacity challenges is shift or changing grazing species if high consumption species are placing pressure on a particular unit of land.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Higher meat and/ or dairy production per unit area.
Increase Resilience
Improved pasture (through proper management) allow higher numbers without retrogression, thus more resilient even to drought conditions, erosion, flooding, etc.
Mitigate Greenhouse Gas Emissions
Increases soil organic matter and plants-thus locks more carbon (c-sequestration).
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_43_CarryingCapacityImprovement_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Identifying, achieving and maintaining optimal carrying capacity helps to avoid rangeland degradation including vegetation depletion and soil erosion, bush encroachment, and optimises resource use.
  • Effectively monitoring carrying capacity can allow communities to respond to climate change impacts, resulting from shifting rainfall patterns and temperature regimes.

Drawbacks

  • Rainfall dependency, class of livestock and quality of grassland affect stocking rate.
  • The stocking rate must be monitored to avoid animal overcrowding, which might cause diseases to spread quickly.
  • It is important to monitor the plant species in your pasture and or rangelands to be able to determine its health and trend.
  • Reseeding should be considered in areas when land is degrading.
Subscribe to Positive

Funding Partners

4.61M

Beneficiaries Reached

97000

Farmers Trained

3720

Number of Value Chain Actors Accessing CSA

41300

Lead Farmers Supported