Skip to main content

System of Rice Intensification (SRI)

Value Chain
Annual Average Rainfall
Soils
Climatic Zone
Water Source
Altitudinal Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

System of Rice Intensification (SRI) is an agro-ecological practice for increasing the productivity of irrigated rice cultivation by changing the management of water, plants, soil and nutrients. SRI promotes the growth of root systems, increases the abundance and diversity of soil organisms by keeping the soil moist but not flooded, and provides frequent aeration and conditioning of soil with organic matter. This agro-ecological practice stimulates plant growth by transplanting young seedlings, avoiding disturbance to roots and providing crops with wider spacing to encourage greater root and canopy growth. The agricultural methodology is based on well-founded agro-ecological principles which have been successfully adapted to upland rice and have shown increased productivity over current conventional planting practices.

Technical Application

To effectively implement SRI practices:

  • Step 1: Consider separation of high-quality seeds from low-quality seeds through soaking them in plain or salt water and the unviable seeds will float on the surface of the water.
  • Step 2: Plant the seeds on an unflooded, raised bed with adequate drainage and fertile soil.
  • Step 3: After 8-12 days, transplant single young seedlings into a grind pattern with wide spacing between hills (25 cm x 25 cm).
  • Step 4: During crop growth period, control the flooding and research and follow alternate wetting and drying irrigation practices.
  • Step 5: Consider application of compost and mineral fertiliser for nutrient enhancement.
  • Step 6: Use a mechanical weeder for the control of weeds and maximisation of soil aeration.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Reduced inputs for greater yield.
Increase Resilience
Predictable yields. Higher production equals increased food security/income and resilience..
Mitigate Greenhouse Gas Emissions
May reduce GHG emissions from irrigation pumps.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_32_SRI_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Increased and diversified crop yield resulting in increased farm income.
  • Improved food security.
  • SRI reduces GHG emissions.
  • Existing water availability patterns to accommodate the irrigation schedule.

Drawbacks

  • SRI is a labour-intensive agricultural practice.
  • Occurrence of methane emissions from rice fields caused by flooding.

Alternate Wetting and Drying

Value Chain
Annual Average Rainfall
Soils
Climatic Zone
Water Source
Altitudinal Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Alternate wetting and drying also called intermittent flooding is a technique developed by the International Rice Research Institute (IRRI) to control water consumption in rice fields (CGIAR 2014). This technology saves water throughout the year in areas of variable rainfall. It is designed as a pick-up water system in cases when water consumption is cut. Water levels are monitored and controlled by the removal of excess water, leaving enough water to sustain crops. Alternate wetting and drying reduces greenhouse gas emissions especially methane, which is emitted from flooded rice fields (FAO 2016). The drying phase helps to sustain and develop plant roots. Moreover, costs on fuel used for irrigation are reduced.

Technical Application

To effectively implement Alternate Wetting and Drying practices:

  • Step 1: Alternate wetting and drying should be considered by the farmer after two weeks of rice transplant.
  • Step 2: The farmer should consider digging half of 30 cm tube into soil to monitor water level.
  • Step 3: When the water level is 15 cm below the soil surface the field should be irrigated again with a depth of 3 to 5 cm before water drains.
  • Step 4: This cycle should be repeated until flowering stage to avoid disturbing reproduction because at this stage the crops are sensitive to water stress.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Cost of production reduced through less use of water.
Increase Resilience
Maintain production with reduced inputs. Predictable yields.
Mitigate Greenhouse Gas Emissions
May reduce GHG emissions from irrigation pumps.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_31_AlternateWettingandDrying_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Alternate wetting and drying maintains rice yields in areas with variable rainfall/irrigation water supply.
  • Reduces greenhouse gas emission such as methane.
  • The technology can be carried out in regions prone to heavy rainfall.

Drawbacks

  • Water levels need to be monitored carefully to avoid water stress which might decrease yield.
  • Not recommended in areas with potential salinity stress as reduced water inputs might aggravate salinity levels and cause yield decline.

Rainwater Harvesting

Annual Average Rainfall
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Rainwater harvesting is an agricultural technique of collecting and storing rainwater or runoff in tanks or natural reservoirs. This practice is mostly practiced in arid or semi-arid areas with temporal and spatial variability of rainfall mostly lost as surface runoff or evaporation. Runoff is harvested and utilised as a preventative measure for soil erosion, as well as a water management strategy for irrigating crops and for livestock water. This technique enables farmers to capture and store rainwater during times of plenty for use during times of scarcity. Rainwater harvesting is a technology that maximises the use of existing freshwater resources and is a useful technology for water resource planners and managers in both governmental and non-governmental organisations, institutions and communities.

Technical Application

To effectively implement Rainwater Harvesting practices:

  • Step 1: Create a water collection zone connected to a gutter system.
  • Step 2: Install filters to the water collection zone.
  • Step 3: Connect a hose pipe for easy distribution of irrigation water.
  • Step 4: If a farmer intends to use water for human consumption other than flushing toilets, etc, water quality must be frequently tested using reliable and low-cost/low-tech solutions.
  • Step 5: Use of filters can be considered to reduce particulate and other pollutants but should be thoroughly investigated – as a separate subject – by the extension officer and the farmer, otherwise it could lead to illness. It is recommended that farms utilise harvested rainwater for irrigation and other farming activities only.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
More water available to plants when it is needed.
Increase Resilience
Mitigate dry spells.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_30_RainwaterHarvesting_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Rainwater harvesting acts as a source of water at a point where it is needed, usually stored in a tank.
  • Works as an alternative water source in cases of drought or irrigation system breakdown.
  • Rooftop rainwater catchment construction is simple.
  • Success in rainwater harvesting depends on frequency and amount of rainfall.

Drawbacks

  • Asphalt, tar and wood roofs may contaminate the water making it unsafe for direct human consumption.
  • For potable water collection, lead containing gutters should not be used.
  • Harvested water may be contaminated by animal waste.

Permeable Rock Dams

Value Chain
Annual Average Rainfall
Soils
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

A permeable rock dam is a water harvesting technique where flooding rain water is collected in valley bases or other depressions to irrigate crops later/elsewhere, filling in gullies, controlling water flows, increasing crop production and reducing soil erosion.. Permeable rock dams are long and relatively shallow to reduce erosion while accumulating silt and distributing water. They comprise of long low rock walls with smooth crests so that water can spread to avoid overflow from the dam. However, this technology is site specific; it cannot be practiced in areas where there are no rocks/stones and means of transporting these building materials. The impoundment of silt prior to runoff entering a watercourse can be beneficiary to downstream users and can contribute to improved water quality in the catchment

Technical Application

To effectively implement Permeable Rock Dam practices, the following steps should be carried out:

  • Step 1: Consider constructing a permeable rock dam across relatively wide and shallow valleys.
  • Step 2: Permeable rock dams should consist of long, low rock walls with level crest along full length although farmers should consider central spillways where water course has cracks.
  • Step 3: The dam should be between 50-300m in length and 1m in height within a gully.
  • Step 4: Consider making the dam wall flatter on the downslope side than on the upslope side.
  • Step 5: A foundation of small stones should be set in the trench.
  • Step 6: An apron of large rocks is essential to split the erosive force of the overflow.
  • Step 7: Downstream banks of the water stream should be shielded by stone pitching to prohibit the increase of the gully.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Erosion Control
Increase Production
Supports agricultural productivity as soil structure is retained and provides access to more sustainable water supplies.
Increase Resilience
Supports adaptation strategies in climate changes scenarios with improved access to water for irrigation and reducing soil erosion.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_29_PermeableRockDams_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Permeable rock dams increase crop production.
  • Reduce soil erosion.
  • The system increases groundwater recharge.

Drawbacks

  • The technology is site specific; should be on a site where rocks and stones are present.
  • Need for large quantities of stone.

Water Spreading Bunds

Value Chain
Annual Average Rainfall
Soils
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Water spreading bunds are barriers used on gradual slopes to slow down surface water and slow filter runoff, increasing the chance of infiltration, capturing runoff sediment, and decreasing soil erosion. Bunds can be built of different materials including packed earth or stones. Bunds can be spread across fields or used in micro-settings around individual trees or plants and should be applied in semi-arid or arid conditions. Bunds efficiently spread rainwater across the system and prevent streams from developing. Implementing bunds in areas with adequate rainfall or irrigation, may cause waterlogging and adversely affect crop growth.

Different types of bunds include:

  • Contour bunds: ridges of soil that follow slope contours and can be implemented at a large scale. Crops are cultivated between bunds.
  • Semi-circle bunds: ridges of varying size build in a half-moon or semi-circle. They are generally applied to rehabilitate rangelands and/or in the production of fodder.
  • Contour stone bunds: lines of stones laid in a shallow dug out areas that slow down the flow of runoff
Technical Application

To effectively Water Spreading Bunds the following should be carried out:

  • Step 1: Farmers should consider making earth bunds by hand, animal ploughs or mechanised ploughs.
  • Step 2: Contour bunds:
    • Contour lines must be plotted and marked prior to developing the bund.
    • A 40 cm deep infiltration pit is dug directly above where the bund will be plotted.
    • Bunds should be spread 5 m to 10 m apart.
    • Material from the infiltration pit will be piled and compacted to form a 25 cm to 30 cm in height with a base of 75 cm.
    • Soil is piled to form a ridge along the contour. The more significant the slope, the closer the bunds must be plotted.
  • Step 3: Semi-circle bunds:
    • Contour lines must be plotted and marked prior to developing the bund.
    • A centre point is chosen as diameter for the bund is selected (this could be 3 m or 30 m depending on the available space). From the centre point a string is used to stake out an even semi-circle.
    • Excavate a small trench before the bund and pile the excavated material. Pile and compact a bund wall, wetting it often to form the wall.
  • Step 4: Contour stone bunds:
    • Developed on less steep slopes.
    • Must have access to local stones.
    • Dig out a shallow ditch, 10 cm to 15 cm in depth.
    • Lay largest stones at the bottom of the ditch and pile smaller stone upward.
    • Step 5: Regular monitoring of bunds should take place, especially after rain events or after significant periods of time. Repairs should be done if any damage is found.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Reduces soil erosion and enables farmers to maintain agricultural productivity.
Increase Resilience
Reduces soil erosion in higher rainfall environments, especially relevant as climates change.
Additional Information
  • The Food and Agriculture Organisation (FAO), 1991. Water Harvesting. Rome, Italy.
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_28_waterSpreading_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Water spreading bunds are implemented on slopes of varying degrees to slow the flow of surface water, increasing infiltration and nutrient capture.
  • Bunds capture water and spread it across an area more evenly, preventing streams, erosion channels and gullies from forming at depression points.

Drawbacks

  • Developing bunds can be laborious.
  • Bunds in areas with adequate rainfall or irrigation may cause waterlogging and affect crop growth.

Half Moon Pits

Value Chain
Annual Average Rainfall
Soils
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Half-moon Pits are water harvesting techniques that assists crop growth in harsh climatic conditions, improving water and nutrient availability, promoting biodiversity and restoring the fertility of the degraded soil. The technique is similar to Zai pits in terms of its purpose. Half-moons are semi-circular wide-open basins used to collect runoff water. The mouth of the half-moons must face a slope where rainwater will flow during precipitation events. Water will be trapped in the pit to irrigate crops. Stones are used to support the half-moon curve to avoid being washed away during rain. The amount of fertilisers required in farming systems decreases when this technique is adopted by farmers. Areas with lots of rainfall are not suitable for this technique as it may lead to water logging effect.

Technical Application

To effectively implement Half-moon techniques, the following steps should be carried out:

  • Step 1: Farmers should consider the diameter of the half-moon  between 2 m – 3 m, with a total surface area of approximately 1.5 sqm and 3.5 sqm.
  • Step 2: Pits should be dug to a depth of between 15 cm to 30 cm.
  • Step 3: Excavated material can be piled around the curved section of the half-moon.
  • Step 4: The curved section of the half-moon can be reinforced by stones to prevent washouts of the half-moon.
  • Step 5: 35 kg of organic fertilisers/compost should be evenly distributed in the half-moon.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Half moon pits support water and nutrient availability, in turn promoting agricultural productivity, especially in harsh climates.
Increase Resilience
Retaining soil water and nutrients supports agricultural productivity.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_27_HalfMoons_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Pits are left to sit while fertiliser/compost material converts to productive soil material.
  • Half-moons allow for nutrient concentration and water infiltration that provides improved conditions for crops to grow.
  • Land that was previously degraded can become productive through the implementation of half-moons.

Drawbacks

Implementing half-moons is very laborious and takes significant people power to implement.

Zai Pits

Value Chain
Annual Average Rainfall
Soils
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Zai pits are based on a traditional technology approach originating from West Africa that assists farmers working on marginal and degraded land. This approach involves the concentration and conservation of nutrients and water at the crop root systems through the digging of small pits (Zai pits) and filling them with compost, with the aim of increasing soil fertility and water infiltration. Zai pits are dug between planting season and filled with organic fertilisers/composts, which attract worms, termites and other insects, creating mix of material that can be used to fertilise crops. Farmers plant crops directly in these pits, prior to rains and water will infiltrate the pits more easily than the surrounding soil. Applying this technology is laborious to implement, but it  has been found to assist farmers in times of drought or in arid conditions to produce successful crops by maximising the resources available. Zai pits allow for mitigation of desertification in degraded land and an economic use of resources in conditions of scarcity, especially in resource constrained environments

Technical Application

To effectively implement Zai Pits the following should be carried out:

  • Step 1: Zai pits should be dug with a diameter of 30 cm to 40 cm and 10 cm to 15 cm deep. 
  • Step 2: Pits should be spaced 70 cm to 80 cm apart resulting in approximately 10,000 pits per hectare.
  • Step 3: The farmer should place 2 – 3 handfuls (200 g to 600 g) of organic fertilisers or compost in each pit.
  • Step 4: Holes that are dug between planting seasons will trap wind eroded soils, which are fertile and form good soils for plating crops.
  • Step 5: It is recommended that 3 tonnes of fertiliser/compost per hectare be available.
  • Step 6: Farmers should consider planting crops in these pits prior to periods of rain.
  • Step 7: Repeated application of Zai pit technology on an annual basis will increase productivity of degraded land in the long term.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Increased soil fertility from zai pit implementation improves agricultural productivity.
Increase Resilience
This approach to fertilising crops and enhancing nutrient content can aid adaptation, especially in arid and semi-arid climates.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_26_ZaiPits_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Earth that is excavated from the hole dug can be used to form a ridge around each pit to help capture and retain water.
  • Zai pit technology can be applied to marginal or degraded land or in semi-arid to arid conditions to allow farmers to rehabilitate soil/land and productively grow crops.
  • Zai pits allow for nutrient concentration and water infiltration that provides improved conditions for crops to grow.
  • Land that was previously degraded can become productive through the use of zai pits.

Drawbacks

  • Implementing zai pits is laborious and takes significant people power to implement – but may be the only option in marginal environments.

In Field Water Harvesting

Value Chain
Annual Average Rainfall
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

In-field water harvesting is the practice of increasing water infiltration and moisture retention in the soil. The agricultural technique involves the collection of rainwater runoff from fields that is collected and stored for future needs. This water can be stored in infiltration pits and later used to water the same crops, other crops through an irrigation system (usually high value crops, including fruit trees), or used for domestic purposes. Factors like soil, water, and plant type influence the effectiveness and productivity of rainwater harvesting. This type of water harvesting is generally implemented in areas of very low rain (semi-arid) conditions. In-field water harvesting entails establishing micro-catchments at the farm scale, where sloped areas have been cleared or cropped to direct rainwater to the water storage area (a pit that has been dug to store/hold water). Utilising strip cropping to growing crops while providing a method for directing rain is sometime practiced. The soil type has a limiting factor in collecting in-field water due the infiltration rates. In-field water harvesting saves rainfall water that can be used over a longer period than during and immediately after a rainfall event, reduces the risks of crop failure due to no or limited rainfall, and increases rain water productivity.

Technical Application

To effectively In Field Water Harvesting techniques, the following steps should be carried out:

  • Step 1: Land is cleared, berms are developed, and crops are planted in order to direct water to the infiltration point.
  • Step 2: The catchment areas should be sloped no more than 5 % and the area should be cleared to promote catchment as much as possible.
  • Step 3: The infiltration pit (where water is stored) should be dug at the lowest point of the catchment areas and line infiltration pits with plastic or concrete roofing to limit water loss, and can be used as a source of irrigation for fruit trees and other high value crops.
  • Step 4: Paths can be built of soil to guide water to the infiltration pit.
  • Step 5: Alley cropping, or strop cropping can be used, with areas between trees and crops dug deeper like a trough to direct water to the infiltration pit.
  • Step 6: To access water from infiltration pits, farmers can introduce a pumping system and water can be distributed around the farm as necessary
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Water is available to plants when it is needed. Reduced nutrient leaching.
Increase Resilience
Mitigate dry spells.
Mitigate Greenhouse Gas Emissions
Can lock more carbon in the soil. More efficient use of fertilisers.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_25_InFieldWaterHarvesting_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Harvested water used in irrigation systems.
  • In-field water harvesting saves rainfall water that can be used over a longer.
  • Reduces the risks of crop failure due to no or limited rainfall.
  • Increases rainwater productivity.

Drawbacks

  • Major issues with a dug-out infiltration pit is evaporation and seepage. Evaporation can be combated by the addition of mulch to water and seepage can be prevented by including some kind of liner (plastic sheet, concrete, etc.). In addition, large plastic, steel or concrete container can be built or sunk below surface to prevent major seepage. Roofs can be built over infiltration pounds or built containers to limit the loss of water to evaporation.

Drip Irrigation

Value Chain
Annual Average Rainfall
Soils
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Drip irrigation is a method of slow delivery of water to crops, through highly-controlled flow management, applied along the soil or at the sub-surface level directly to crop root systems. Drip irrigation is an effective system for conserving water while ensuring that it is used optimally without losing it to evaporation through high efficiency water delivery. Drip irrigation involves establishing a network of tubes, values and pipes connected to water source by a pump, along crop rows. A water source is required which is a drawback as many dryland areas lack these water sources. Drip irrigation is a climate smart option as it increases farmer resilience to the effects of climate change.

Technical Application

To effectively implement drip irrigation:

  • Step 1: A reliable water source must be available - natural (natural or through rain-water harvesting).
  • Step 2: Acquire a pump system (approximately $US 100) that maintains enough pressure to deliver water through the system or an elevated tank.
  • Step 3: Connect lines or hoses and laterals that run from the pump system across the planted fields.
  • Step 4: Run lines or hoses with emitters (drippers) or small punctures at the surface level along planted crops or just below the surface providing water to the roots system of the plants.
  • Step 5: Once the system is operable, the pump can be turned on and water dispersed as required by the nature of the crop and can also be implemented with supplemental irrigation strategies (Technical Brief 23).
  • Step 6: Monitor the irrigation system regularly to ensure there are no malfunctions and the system is maintained. Crops that receive regular water can develop shallow root systems and any prolonged disruptions in service could have   significant impacts.
  • Step 7: If applying drip irrigation in sloped conditions, follow the contours of the slope as outlined in Technical Brief 16.

Once a drip irrigation system is up and running, farmers can explore fertigation, the addition of soluble fertilisers into the irrigation system water for distribution directly to plants.

Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Energy saving.
Increase Resilience
Increase crop yield.
Mitigate Greenhouse Gas Emissions
Continued production in changing environments.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_24_DripIrrigation_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Maximises efficiency in crop irrigation in dryland or variable climate conditions.
  • Minimizes the loss of water to evaporation.

Drawbacks

  • Requires consistent water source.
  • Costs of establishing the system, pump and lines/hoses can be significant depending on configuration, etc.
  • Requires continual monitoring and may need regular maintenance.

Supplemental Irrigation

Value Chain
Annual Average Rainfall
Soils
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Supplemental irrigation (SI) , also referred to as  Deficit Irrigation, is the application of water below full crop-water requirements, generally in drylands to assist crop growth in areas that experience low rainfall (300-500 mm/year). Supplemental irrigation involves adding limited amounts of water to rainfed crops to improve and stabilise yields when rainfall is insufficient for plant growth. Supplemental irrigation is a valuable and sustainable production strategy in dry regions or when experiencing irregular climatic conditions. This practice requires understanding of the yield response to water and the economic impact of loss in harvest. The aim of this technique is to ensure that the minimum amount of water is available during critical stages of crop growth.

Technical Application

To effectively undertake deficit irrigation:

  • Step 1: Determine critical growth cycle of desired crops.
  • Step 2: Experiment with SI strategies to determine critical watering times prior to upscaling.
  • Step 3: Strict management is required to determine the level of transpiration deficiency allowable without significant reduction in crop yields.
  • Step 4: Farmers capable of implementing deficit irrigation must have access to the minimum required water to implement deficit irrigation.
  • Step 5: Farmers must have access to a reliable water source, irrigation systems, including water distribution system, sprinklers and/or drip irrigation system.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Stabilises yield.
Increase Resilience
Adapts to real time rainfall conditions.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_23_SupplementalIrrigation_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Increase crop production in dry areas or those experiencing drought.
  • Assist farmers manage crops at optimal times (low rainfall).

Drawbacks

  • Farmers must have access to enough water to meet minimum water requirements.
  • Require water distribution system that is functional.
  • Close management of crops to ensure that SI is implemented at critical crop production moments.
Subscribe to Positive

Funding Partners

4.61M

Beneficiaries Reached

97000

Farmers Trained

3720

Number of Value Chain Actors Accessing CSA

41300

Lead Farmers Supported