Skip to main content

Water Spreading Bunds

Value Chain
Annual Average Rainfall
Soils
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Water spreading bunds are barriers used on gradual slopes to slow down surface water and slow filter runoff, increasing the chance of infiltration, capturing runoff sediment, and decreasing soil erosion. Bunds can be built of different materials including packed earth or stones. Bunds can be spread across fields or used in micro-settings around individual trees or plants and should be applied in semi-arid or arid conditions. Bunds efficiently spread rainwater across the system and prevent streams from developing. Implementing bunds in areas with adequate rainfall or irrigation, may cause waterlogging and adversely affect crop growth.

Different types of bunds include:

  • Contour bunds: ridges of soil that follow slope contours and can be implemented at a large scale. Crops are cultivated between bunds.
  • Semi-circle bunds: ridges of varying size build in a half-moon or semi-circle. They are generally applied to rehabilitate rangelands and/or in the production of fodder.
  • Contour stone bunds: lines of stones laid in a shallow dug out areas that slow down the flow of runoff
Technical Application

To effectively Water Spreading Bunds the following should be carried out:

  • Step 1: Farmers should consider making earth bunds by hand, animal ploughs or mechanised ploughs.
  • Step 2: Contour bunds:
    • Contour lines must be plotted and marked prior to developing the bund.
    • A 40 cm deep infiltration pit is dug directly above where the bund will be plotted.
    • Bunds should be spread 5 m to 10 m apart.
    • Material from the infiltration pit will be piled and compacted to form a 25 cm to 30 cm in height with a base of 75 cm.
    • Soil is piled to form a ridge along the contour. The more significant the slope, the closer the bunds must be plotted.
  • Step 3: Semi-circle bunds:
    • Contour lines must be plotted and marked prior to developing the bund.
    • A centre point is chosen as diameter for the bund is selected (this could be 3 m or 30 m depending on the available space). From the centre point a string is used to stake out an even semi-circle.
    • Excavate a small trench before the bund and pile the excavated material. Pile and compact a bund wall, wetting it often to form the wall.
  • Step 4: Contour stone bunds:
    • Developed on less steep slopes.
    • Must have access to local stones.
    • Dig out a shallow ditch, 10 cm to 15 cm in depth.
    • Lay largest stones at the bottom of the ditch and pile smaller stone upward.
    • Step 5: Regular monitoring of bunds should take place, especially after rain events or after significant periods of time. Repairs should be done if any damage is found.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Reduces soil erosion and enables farmers to maintain agricultural productivity.
Increase Resilience
Reduces soil erosion in higher rainfall environments, especially relevant as climates change.
Additional Information
  • The Food and Agriculture Organisation (FAO), 1991. Water Harvesting. Rome, Italy.
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_28_waterSpreading_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Water spreading bunds are implemented on slopes of varying degrees to slow the flow of surface water, increasing infiltration and nutrient capture.
  • Bunds capture water and spread it across an area more evenly, preventing streams, erosion channels and gullies from forming at depression points.

Drawbacks

  • Developing bunds can be laborious.
  • Bunds in areas with adequate rainfall or irrigation may cause waterlogging and affect crop growth.

Half Moon Pits

Value Chain
Annual Average Rainfall
Soils
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Half-moon Pits are water harvesting techniques that assists crop growth in harsh climatic conditions, improving water and nutrient availability, promoting biodiversity and restoring the fertility of the degraded soil. The technique is similar to Zai pits in terms of its purpose. Half-moons are semi-circular wide-open basins used to collect runoff water. The mouth of the half-moons must face a slope where rainwater will flow during precipitation events. Water will be trapped in the pit to irrigate crops. Stones are used to support the half-moon curve to avoid being washed away during rain. The amount of fertilisers required in farming systems decreases when this technique is adopted by farmers. Areas with lots of rainfall are not suitable for this technique as it may lead to water logging effect.

Technical Application

To effectively implement Half-moon techniques, the following steps should be carried out:

  • Step 1: Farmers should consider the diameter of the half-moon  between 2 m – 3 m, with a total surface area of approximately 1.5 sqm and 3.5 sqm.
  • Step 2: Pits should be dug to a depth of between 15 cm to 30 cm.
  • Step 3: Excavated material can be piled around the curved section of the half-moon.
  • Step 4: The curved section of the half-moon can be reinforced by stones to prevent washouts of the half-moon.
  • Step 5: 35 kg of organic fertilisers/compost should be evenly distributed in the half-moon.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Half moon pits support water and nutrient availability, in turn promoting agricultural productivity, especially in harsh climates.
Increase Resilience
Retaining soil water and nutrients supports agricultural productivity.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_27_HalfMoons_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Pits are left to sit while fertiliser/compost material converts to productive soil material.
  • Half-moons allow for nutrient concentration and water infiltration that provides improved conditions for crops to grow.
  • Land that was previously degraded can become productive through the implementation of half-moons.

Drawbacks

Implementing half-moons is very laborious and takes significant people power to implement.

In Field Water Harvesting

Value Chain
Annual Average Rainfall
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

In-field water harvesting is the practice of increasing water infiltration and moisture retention in the soil. The agricultural technique involves the collection of rainwater runoff from fields that is collected and stored for future needs. This water can be stored in infiltration pits and later used to water the same crops, other crops through an irrigation system (usually high value crops, including fruit trees), or used for domestic purposes. Factors like soil, water, and plant type influence the effectiveness and productivity of rainwater harvesting. This type of water harvesting is generally implemented in areas of very low rain (semi-arid) conditions. In-field water harvesting entails establishing micro-catchments at the farm scale, where sloped areas have been cleared or cropped to direct rainwater to the water storage area (a pit that has been dug to store/hold water). Utilising strip cropping to growing crops while providing a method for directing rain is sometime practiced. The soil type has a limiting factor in collecting in-field water due the infiltration rates. In-field water harvesting saves rainfall water that can be used over a longer period than during and immediately after a rainfall event, reduces the risks of crop failure due to no or limited rainfall, and increases rain water productivity.

Technical Application

To effectively In Field Water Harvesting techniques, the following steps should be carried out:

  • Step 1: Land is cleared, berms are developed, and crops are planted in order to direct water to the infiltration point.
  • Step 2: The catchment areas should be sloped no more than 5 % and the area should be cleared to promote catchment as much as possible.
  • Step 3: The infiltration pit (where water is stored) should be dug at the lowest point of the catchment areas and line infiltration pits with plastic or concrete roofing to limit water loss, and can be used as a source of irrigation for fruit trees and other high value crops.
  • Step 4: Paths can be built of soil to guide water to the infiltration pit.
  • Step 5: Alley cropping, or strop cropping can be used, with areas between trees and crops dug deeper like a trough to direct water to the infiltration pit.
  • Step 6: To access water from infiltration pits, farmers can introduce a pumping system and water can be distributed around the farm as necessary
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Water is available to plants when it is needed. Reduced nutrient leaching.
Increase Resilience
Mitigate dry spells.
Mitigate Greenhouse Gas Emissions
Can lock more carbon in the soil. More efficient use of fertilisers.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_25_InFieldWaterHarvesting_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Harvested water used in irrigation systems.
  • In-field water harvesting saves rainfall water that can be used over a longer.
  • Reduces the risks of crop failure due to no or limited rainfall.
  • Increases rainwater productivity.

Drawbacks

  • Major issues with a dug-out infiltration pit is evaporation and seepage. Evaporation can be combated by the addition of mulch to water and seepage can be prevented by including some kind of liner (plastic sheet, concrete, etc.). In addition, large plastic, steel or concrete container can be built or sunk below surface to prevent major seepage. Roofs can be built over infiltration pounds or built containers to limit the loss of water to evaporation.

Drip Irrigation

Value Chain
Annual Average Rainfall
Soils
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Drip irrigation is a method of slow delivery of water to crops, through highly-controlled flow management, applied along the soil or at the sub-surface level directly to crop root systems. Drip irrigation is an effective system for conserving water while ensuring that it is used optimally without losing it to evaporation through high efficiency water delivery. Drip irrigation involves establishing a network of tubes, values and pipes connected to water source by a pump, along crop rows. A water source is required which is a drawback as many dryland areas lack these water sources. Drip irrigation is a climate smart option as it increases farmer resilience to the effects of climate change.

Technical Application

To effectively implement drip irrigation:

  • Step 1: A reliable water source must be available - natural (natural or through rain-water harvesting).
  • Step 2: Acquire a pump system (approximately $US 100) that maintains enough pressure to deliver water through the system or an elevated tank.
  • Step 3: Connect lines or hoses and laterals that run from the pump system across the planted fields.
  • Step 4: Run lines or hoses with emitters (drippers) or small punctures at the surface level along planted crops or just below the surface providing water to the roots system of the plants.
  • Step 5: Once the system is operable, the pump can be turned on and water dispersed as required by the nature of the crop and can also be implemented with supplemental irrigation strategies (Technical Brief 23).
  • Step 6: Monitor the irrigation system regularly to ensure there are no malfunctions and the system is maintained. Crops that receive regular water can develop shallow root systems and any prolonged disruptions in service could have   significant impacts.
  • Step 7: If applying drip irrigation in sloped conditions, follow the contours of the slope as outlined in Technical Brief 16.

Once a drip irrigation system is up and running, farmers can explore fertigation, the addition of soluble fertilisers into the irrigation system water for distribution directly to plants.

Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Energy saving.
Increase Resilience
Increase crop yield.
Mitigate Greenhouse Gas Emissions
Continued production in changing environments.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_24_DripIrrigation_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Maximises efficiency in crop irrigation in dryland or variable climate conditions.
  • Minimizes the loss of water to evaporation.

Drawbacks

  • Requires consistent water source.
  • Costs of establishing the system, pump and lines/hoses can be significant depending on configuration, etc.
  • Requires continual monitoring and may need regular maintenance.

Solar Irrigation

Value Chain
Annual Average Rainfall
Soils
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Solar irrigation systems utilise solar energy to pump water to fields and distribute it through drip irrigation or other systems. Solar irrigation is a low-emission agricultural technology that replaces fossil fuel irrigation pumps reducing greenhouse gas emissions. This approach has the potential to reduce energy costs for irrigation and provide energy independence in rural areas. It provides opportunities to increase productivity by shifting from rainfed to irrigated agriculture in some areas. Solar irrigation systems require intensive management and regular monitoring to ensure the sustainable use of water resources. It requires maintenance of solar panels and irrigation equipment but can quickly yield a positive return on investment. Solar irrigation can be implemented for crop irrigation and livestock watering schemes and can improve food security, produce high value crops for sale, reduce energy costs and drive rural development. Although an expensive technology, solar irrigation can introduce significant operational savings if managed and maintained appropriately. It is considered a climate smart option as it can increase productivity, enable farms to adapt t climate changes and improve resilience, and the use of solar power reduces the use of on-grid, or diesel generator power, reducing emissions.

Technical Application

To effectively implement solar irrigation:

  • Step 1: To determine the solar pump system Crop water requirements, location, water sources etc. Do required research. Is water sourced from an above ground or below ground source?
  • Step 2: Source required materials to implement a solar irrigation system from regional or international suppliers including:
    • Photovoltaic (PV) panels to generate electricity (80-300 W system depending on context);
    • a structure to mount the panels;
    • a pump controller;
    • a surface or submersible water pump; and
    • a distribution system or storage tank for water.
  • Step 3: Identify funding sources as initial costs, as well as maintenance costs, must be considered and modelled prior to purchasing a system. There are regional and international solar irrigation producers.   These costs differ dramatically given the complexity of the context, starting at costs approximately USD $2,400 for equipment only. If drilling is necessary the cost increases significantly depending on depth, substrate etc.  Community-based investment, micro-leasing and rental services can be possible funding models to explore.
  • Step 4: Determine whether there is sufficient solar irradiation for the proposed area – consult and specialist; and/or the national meteorological service.
  • Step 5: Identify area suitable to install solar panels. The area should be easily accessible, and all trees/bush should be cleared. To determine most appropriate site and angle of panels, etc, consult an expert.
  • Step 6: The availability of technical expertise must be considered before implementation to ensure that any technical issues do not result in long period of service disruption.

Maintenance costs and expertise should be considered before installing solar irrigation systems. A detailed cost benefit analysis is advisable. Other key technical considerations include: Legal permits to extract water from the source as water extraction may impact community watershed levels.

Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Plants get enough water. Potential for two or more cropping seasons per year.
Increase Resilience
Predictable yields. Higher production equals increased food security/income and resilience.
Mitigate Greenhouse Gas Emissions
Significant reductions in CO2 emissions compared to grid and diesel-fuelled systems.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_22_SolarIrrigation_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Energy independence will introduce significant cost savings for farmers.
  • Solar powered irrigation can significantly boost productivity, due to increased ability to sustainably irrigate crops.
  • Consistent irrigation can help to mitigate climate impacts, and aid adaptation.
  • Reduces operational costs for diesel or on-grid power to pump water.
  • Reduces greenhouse gas emissions.

Drawbacks

  • Solar irrigation is expensive to implement and there are costs for maintenance. Therefore, savings or access to credit will be required.
  • Access to solar equipment, spares and parts, and the transportation of the above may be complicated and/or expensive.
  • Over and above cost and access technology, other issues such as access to land and water sources are important factors.

Terracing

Value Chain
Annual Average Rainfall
Soils
Topography
Climatic Zone
Water Source
Altitudinal Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Terraces are cross-slope barriers that have been cut into slopes offering surfaces that are flat or slightly sloped. Terraces are designed to minimise erosion and increase the infiltration of runoff water. In addition, terracing allows for a maximum of area for farming and cropping by cutting into slopes, creating steps on a hillside. Riser walls are retained by growing trees or grasses, using stones or compacted soil to manage runoff and ensure stability. Terracing involves significant planning and labour to implement and maintain. Labour should be coordinated and planned to ensure that terracing is not carried out in an ad hoc manner, and labour to maintain the terraces is available annually. Terracing is suited to areas with severe erosion hazards, deep soils, on slopes that do not exceed 25 degrees and are not too stony. Community action is often required, as terracing is a landscape-level solution that can only be implemented if all parties agree and convert slopes together. Implementing individual terraces or terraced sections can negatively impact the entire hillside.

Technical Application

To effectively approach to terracing construction:

  • Step 1: Measure slope angle – should not exceed 25 degrees and soils should be at least 0.5 metres deep.
  • Step 2: Plot the contours – see Technical Brief 16 Contour Planting for instructions for staking-out contours, and the diagram below for use of a t-stick to measure the distance between contours.
  • Step 3: Start at the lowest terrace. Dig a trench vertically below the next contour, and then dig outwards to the lowest contour. Remove soil and place downhill below the lowest contour.
  • Step 4: Compact soil on constructed terrace.
  • Step 5: Work should then progress upslope, emptying top-soil on to the terrace below to provide soil for planting.
  • Step 6: Strengthen riser buttress walls (back-walls) with stones, compacted soil, or by planting grass or trees.
  • Step 7: Terrace-end drainage should also be considered, so water does not pool too heavily. The down-field gutters can be lined with stones to reduce erosion

Detailed diagrams and tables for calculating terrace dimensions are provided in Peace Corps 1986, Soil conservation techniques for hillside farming.

Additional guidance can be sought from videos provided by Access Agriculture: SLM02 Fanya Juu terraces. The Kenyan example provided is also up-slope terrace construction but using a different method where a trench is dug, and the loose topsoil is thrown up-hill (fanya juu in Kiswahili) which forms a ridge that flattens over time.

Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Stable slopes are a critical element of maintaining agricultural productivity.
Increase Resilience
Terraces enhance slope stability and reduce soil erosion in the face of changing climates, with changing temperature and rainfall regimes.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_18_Terracing_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Terracing prevents erosion and can act as a rainfed irrigation system.
  • Terracing is a labourious process to implement and takes significant effort to maintain.

Drawbacks

  • Requires professional advice on implementing terracing.
  • If implemented incorrectly, can have negative impacts including more erosion than without terracing.

Contour Planting

Value Chain
Annual Average Rainfall
Soils
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Contour Planting is a planting strategy for sloping fields, where crop rows follow slope contours rather than planting in rows up- and down-slope. The primary aim of this strategy is to slow the downhill flow of water and encourage the infiltration of water into the soil. Slowing the flow of runoff water reduces soil erosion and therefore also nutrient loss.

Contour Ridges are created by tilling, ploughing or hoeing soil to establish ridges along contour lines, acting as a barrier to downhill water runoff and other erosive processes - the higher the ridge height, the more effective the barrier is to preventing soil erosion.

Contour Strips involves use of vegetative barriers e.g. planting of strips of grass or hedges and other species to secure soil and further prevent erosion. These practices are labour intense and require extension support, especially as contour lines are not straight but follow slope characteristics, correctly identifying contour lines is important and can be done using the ‘low-technology’ options that are identified in the Technical Application section of this Technical Brief.

Technical Application

To effectively undertake contour planting:

  • Step 1: Construct an A-frame that has a plumb-line with a rock hanging down the centre. The base of the A-frame should be 90 cm.
  • Step 2: Calibrate the A-frame on flat ground. Ensure that both legs are on the ground. Mark where the plumb line meets the cross bar.
  • Step 3: On a slope, working perpendicular to the slope, plant one leg of the A-frame and swing the other leg around until the plumb line meets the mark on the cross bar. Drive a stake into the ground where the first ‘planted’ leg is and continue the process across the slope.
  • Step 4: Once the extent of the contour has been staked, tie a string from post-to-post across the slope; this identifies the contour to be planted.
  • Step 5: Plant selected crops, develop contour ridges or plant contour strips along the contour line.
  • Step 6: Subsequent contours should be spaced 3-5 m up or downhill of the preceding contour line. To determine the length between contour lines, measure off the top of each stake to a stake up or downhill with a tape measure or accurately measured third stick.
  • Step 7: Contour ridges can be implemented like Water Spreading Bunds (Technical Brief 28) to form ridges of soil that are formed by tilling or ploughing and can be left after land preparation to further prevent erosive forces. Crops can be planted between these ridges.
  • Step 8: The planting of contour strips can be implemented by planting grasses or hedges 20 m (shallow slopes) to 10 m (steeper slopes) apart up or downhill, similar to Trash Lines (Technical Brief 14). This intercropping allows for erosion control and can be used as fodder for livestock.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Retaining soil structure enables farmers, particularly those planting on sloping fields to maintain productivity.
Increase Resilience
This land management practice aid farmers to maintain soil structure in the face of changing climates and shifting rainfall patterns.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_16_ContourPlanting_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Contour planting prevents erosion on sloped fields and efficiently trap runoff water.
  • Contour planting improved water infiltration and contour ridges improve water retention.
  • Contour planting can be integrated with intercropping contour strips of grass or hedges to help maintain soil structure.

Drawbacks

  • Contour lines are extremely labour intensive and take a significant amount of time to implement.
  • During contour measuring and development, land may be exposed to erosive forces.

Erosion Control

Value Chain
Topography
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Erosion control measures are practices designed to reduce runoff water and wind erosion that wash away top soil and nutrients, degrading soil biodiversity and reducing agricultural productivity. Erosion is a natural, biophysical process resulting from rainfall, water flows, wind, or storm runoff. Erosion is integral to the formation of soils, however human and animal activity, including agriculture and clearing of land, can accelerate erosive processes, drastically impacting landscapes, soils (e.g. quality) and watercourses. In addition, erosion control measures can contribute to reducing rainfall runoff, increased water infiltration into the soil, and attenuates flooding. The intensity of rainfall is directly correlated with the severity of soil erosion; hence, this is a significant problem across the Southern African region as much of the rainfall in the region is episodic, and intense. To prevent or reduce erosive processes control measures can be incorporated into farming systems to reduce or reverse degradation and potentially restore or improve soil quality. Erosion control measures aim to mitigate soil erosion and improve soil fertility by reducing flow and speed of run-off to avoid soil being washed away. Erosion control can be initiated through a number of interventions, including, but not limited to, intercropping (e.g. planting cover crops), mulch, conservation tillage and reforestation, as well as terracing, soil bunds, etc.. Example: Stone Bunds. Lessons learned from West Africa show that stone bunds constructed along contour lines in fields and in key run-off locations can significantly reduce run-off, particularly in steeper agricultural fields. The stone lines reinforce the soil structure in the field following the contours of the land, reducing the speed and volume of run-off, thereby reducing the likelihood of erosion. This is an appropriate technology to implement on slopes up to 15 to 20 degrees. This is considered a climate smart practice as it maintains soil structure and nutrients, in turn retaining carbon in soil, enabling farmers to adapt to climate changes and sustain agricultural productivity.

Technical Application

Without a topographic survey, this technology may require trial and error to begin with, to see how rainfall and run-off responds to the contouring. To effectively implement erosion control measures the following should be carried out:

  • Step 1: Perform a thorough local study of the landscape, soils, land use and erosive processes that most impact the area: steep slopes, flood plains, high winds etc.
  • Step 2: Source a large number of stones, preferably five to ten centimetres square blocks (from a quarry) or five to ten-centimetre diameter cobbles (from a river-bed). You will need 30 to 50 tonnes of stone per hectare for contour bunds approximately 300 metres long.
  • Step 3: Mark out contours, as discussed in Technical Brief 16 Contour Planting.
  • Step 4: In larger fields with shallower slopes, place stones in rows of two along contour line, interlocking alternately, burying the lower half. The bunds can be between 25 and 40 metres apart. On steeper slopes, stack and bury stones against or in vertical/near vertical walls of contours much closer together (five to ten metres apart) to reinforce them.
  • Step 5: Make sure that stone bunds follow the contours from one side of the field to the other, ensuring that no ‘pour’ points (larger gaps) exist along the way, lining the drainage channel or weir from one contour to the next with stones to avoid or reduce scouring in these locations.
  • Step 6: Following, and if possible, during rainfall events, check the stability of the slope, adjusting stone bunds where necessary.
  • Step 7: At the end of the rainy season and again following harvest, review the performance of the technology, and prepare for the next growing season.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Increased water infiltration can extend growing period and mitigates short dry spells. Can reduce flood risk downstream.
Increase Resilience
Increased production due to improved nutrient availability and higher nutrient use efficiency.
Mitigate Greenhouse Gas Emissions
Depending on practices used, may lock more carbon into the soil.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_11_ErosionControl_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Erosion control measures prevent the loss of top soils and nutrients.
  • Can help farmers adapt to changes in climate that have include increased rainfall amounts and intensity.
  • Can reduce the impact of wind erosion.

Drawbacks

  • Erosion is a natural process that can be increased due to human and animal activity.
  • Requires substantial labour inputs to construct bunds and other erosion control measures
  • Maintenance is also needed.

No Tillage

Value Chain
Annual Average Rainfall
Soils
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

No-tillage or reduced-tillage farming involves growing crops without ploughing or reducing the use of machinery in preparing fields for planting. Excessive tillage can have major impacts on soils and the environment including loss of organic matter and soil organisms, increased soil erosion and pesticide runoff, reduced soil fertility, loss of soil structure, etc. Thus, implementing no- or reduced-tillage can help farmers in conserving soil quality and in many cases, increase crop production.

In implementing no-tillage processes, land is not or is minimally disturbed and crop residues are normally left on the soil surface with minimal use of implements. Reduced tillage practices include technological changes such as using more efficient ploughing tools and/or implementing strip-till, zone-till or ridge-till processes. Most reduced tillage systems are implemented in conjunction with cover crops and mulches to protect soil structure.  Tilling by hand or animal means are considered reduced tillage methods.

The adoption of no or reduced tillage practices reduces the amount of fossil fuels consumed by farmers and increases carbon sequestration as soil carbon is not exposed or released in the atmosphere and is thus a climate smart practice.

Technical Application

Switching to no-till or reduced tillage should be planned at least a year in advance so preparations can be made necessary implements can be obtained. Implements should match farm labour availability. You will also need to decide if no till or reduced tillage methods are appropriate based on farm area and desired crops, and start with a small area to determine feasibility. Cereal and legume crops are suitable for no tillage while vegetables and other crops often require some tillage – i.e. reduced tillage.

There are two forms of no-tillage, conventional and organic. Conventional no-tillage includes the application of herbicides to manage weeds, prior to and after planting. Organic no-tillage does not incorporate the use of herbicides, but includes other methods for controlling weeds, including cover crops, crop rotation and free-range livestock. Organic no-tillage is more suitable as it assists mitigate any climate change impacts on the farm.

No till

  • Step 1: Prepare fields using conventional (herbicide application) or organic processes include cover crop (Technical Brief 15) and crop rotation (Technical Brief 09).
  • Step 2: Test soils – aiming to balance nutrient and pH levels. In the case of acidic soils, add small amounts of lime each year.
  • Step 3: Avoid soils with bad drainage, as they become water-logged.
  • Step 4: Level the soil surface, removing uneven areas to assist even seed planting.
  • Step 5: Eliminate soil compaction.

Reduced Till

  • Step 1: This approach is similar to regular tillage, but with significantly less disturbance of the soil. Tilling is only done where needed, and the rest of the soil is undisturbed.
  • Step 2: Strip-tillage or zone-tillage involves tilling and seeding in 15 cm strips leaving areas in-between undisturbed.
  • Step 3: Ridge-tillage involves preparing ridges post-harvest and letting them settle over time to be planted the next seeding period; with ridges not more than 60 cm apart.

More information of each of these specific practices should be sought prior to implementation.

Crop rotation is a complimentary farming method when practicing no-tillage, as it promotes maximum biomass levels for permanent mulch cover, while controlling weeds (with pre- and post-emergent herbicides), pests, and diseases, as well as improving soil nutrition and fertility.

Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Improved soil structure and increased microbial and invertebrate activity in the soil makes nutrients more available to plants.
Increase Resilience
Increased water infiltration and soil biodiversity mitigates the effects of short-term dry spells.
Mitigate Greenhouse Gas Emissions
Locks more carbon in the soil. Reduced ‘passes’ in mechanised systems reduces fuel inputs required.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_12_No%20Tillage_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Increased soil fertility, organic matter and soil structure, and beneficial organisms (earthworms, etc).
  • Reduced compaction of soils.
  • Prevention of soil erosion.
  • Reduction in fossil fuel consumption.
  • Increased soil carbon sequestration.

Drawbacks

  • A positive response can be delayed for up to three years.
  • Effective weed management may require the application of herbicides.
  • Possible decreases in crop productivity if not carried out effectively.
Subscribe to Positive

Funding Partners

4.61M

Beneficiaries Reached

97000

Farmers Trained

3720

Number of Value Chain Actors Accessing CSA

41300

Lead Farmers Supported