Skip to main content

Push and Pull Systems

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

A push pull system is a technique that repels parasitic plants and pests that attach themselves to the crop roots and feed on them.. In push-pull, a cereal crop is intercropped with a leguminous plant like desmodium or molasses grass, while a popular fodder crop, Napier grass, is planted as a border around the field. Desmodium produces volatile chemicals that attract predators of the cereal e.g of maize pests. More importantly, by giving a false distress signal to the moths that the area is already infested, these chemicals ‘push’ the egg laying moths away from the crop to seek out habitats where their larvae will face less competition for food. Napier grass also produces volatile chemicals that ‘pull’ the moths towards them, and then exudes a sticky substance that traps the stem borer larvae as they feed. Few larvae survive. Napier grass attracts stem borer predators.  The intercropping is a climate smart practice as it mitigates emission of Greenhouse gases through the reduced need for pesticides. The push-pull system improves food security and boosts farm income.

Technical Application

To effectively implement  push and pull systems:

  • Step 1: Plant Napier and a legume like Desmodium or molasses grass  between every three rows of maize/sorghum as barriers to repel stemborers away from crops.
  • Step 2: Plant the Desmodium first as soon as the rains begin, so it immediately repels the stalk borers before the maize/sorghum emerge.
  • Step 3: Plant three rows of Naiper grass around the borders of maize field.
  • Step 4:  Allow pest enemies such as ants and spiders to enter the field to feed on stemborers.
  • Step 5: Cut grass and fed to animals as forage.
  • Step 6:  Abandon areas that are heavily affected by stemborers until treated.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
A push-pull system supports sustainable productivity by reducing the need for expensive pesticides, and boosting farm income.
Increase Resilience
A sustainable and environmentally friendly method for maintaining soil health and productivity while controlling pests.
Mitigate Greenhouse Gas Emissions
Reduced application of synthetic fertilisers reduces greenhouse gas emissions.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_58_PushandPullSystems_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Reduces the need for pesticides.
  • Improves food security and boost farmers’ income.
  • The green technique deals with trapping the pests (pull) and repelling them (push) by planting Napier and desmodium or molasses grass next to cereal crops.
  • The relationship between insect-plant and insect-insect (introducing pest enemies such as ants/spiders) is achieved in order to kill stemborers.
  • Grass planted next to crops can be salvaged and used as forage.

Drawbacks

  • Naiper grass take up space on the field.
  • Cost and lack of availability of Desmodium seed.
  • Difficulty in establishing the Desmodium crop, hence practice not suitable for all farmers.

Resistant Varieties

Value Chain
Annual Average Rainfall
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Resistant varieties are new crop varieties that improve yield production, are resistant to pests and diseases, more tolerant to drought, salinity or other changing or undesirable environmental conditions. Crop plants used within this practice are usually only resistant to a limited number of undesirable characteristics e.g. pests or drought – but usually not both, and some other desirable traits may be lost while others may be strengthened. Hence, careful selection of candidate species must be undertaken. Resistance varieties common in southern Africa include drought resistant maize, sorghum, rice and cowpea (beneficial legume for intercropping) strains, striga (witch weed) resistant sorghum and maize strains, and others all help farmers adapt to changing climate conditions, by being able to farm crops that survive the increasingly variable climate, which can result in less rainfall, or the presence of new pests. Striga results in crop losses totalling over USD 1 billion per year, whereas research has shown that planting climate resilient maize varieties can lead to up to a 25 % increase in crop yields.

Exploring new pest or drought resistant varieties in a regional will require demonstration and testing in ‘test plots’, so extension workers can ensure that the outcomes are aligned with farmers wants/needs/tastes, and so farmers are familiar with the new varieties before they are mainstreamed. Acceptance of new varieties, and any changes is traits will be critical, as resistant varieties is a key intervention for climate adaptation in southern Africa, as they will allow farmers to remain productive for longer under challenging conditions, and while different crops altogether are investigated.

Technical Application

To effectively leverage resistant varieties, the following should be carried out:

  • Step 1: Survey farmers and meet with other local and national level extension officers to determine key interventions required – drought tolerance, prevalence of certain pests, etc.
  • Step 2: Research and meet other local extension officers to discuss best methods applied to the agricultural practice of resistant varieties in the region.
  • Step 3: Talk to the agricultural dealers and seed manufacturers about the varieties being offered and their characteristics.
  • Step 4: Talk to the agricultural research departments about best opportunities under climatic change in your specific area.
  • Step 5: Either independently or in partnership with seed manufacturers, establish test plots of viable resistant varieties in key locations to act as demonstration plots for farmers to visit, observe growth and harvest, and test the outcomes. Many conditions may come into play when attempting to mainstream resistant varieties, including visual aspects, harvesting and processing differences, palatability and taste, etc. All of these issues must be discussed with farmers during testing and roll-out to ensure resources are not wasted with varieties that will fail.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Reduced incidence of pests and disease results in higher yields.
Increase Resilience
Healthier and more pest resilient farm and landscape. Prediction of pest outbreaks enables earlier management decisions.
Mitigate Greenhouse Gas Emissions
Reduced losses result in lowering GHG emissions per tonne produced
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_57_ResistantVarieties_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • The practice is widely used to increase yield production, produce pest and disease resistant varieties and improve environmental tolerance.
  • Further combines the best traits of the parental forms resulting in some strengths and weaknesses, resulting in a variation of crops species.

Drawbacks

  • May require investment and/or access to credit, as new seeds will not be in farmer seed banks/stores and may be expensive to kick-start implementation.
  • May take time to launch new varieties and gain acceptance from farmers/consumers/markets.

Resistant Breeds

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Resistant breeds Disease resistance is the reduction of pathogen growth in or in a plant or animal; denoting less disease development in a particular breed than that which is relatively susceptible and is specific to a particular strain of disease or attribute. Breeding resistant breeds  . Resistance” means the animal actively fights infection by various means. Building resistant breeds can be done through selection. Selective breeding, sometimes called artificial selection, where different breeds of animals with desired characteristics or attributes like resistance to. drought, heat, cold, salinity, flood, submergence and pests can be developed by selective breeding and thus able to relatively thrive in some conditions which would otherwise not be able to, e.g. This assists in the reduction of diseases, results in healthier productive animals and reduces risk of secondary infections in livestock. These breeds create a potential for more efficient conversion of feed into meat or diary, and thus a climate smart attribute since by reducing emissions per unit of production (proportionately less faeces are dropped per unit consumption of feed) as well as contributing to food security.,. In the Southern African Development Community (SADC) region, local breeds are more resistant to many of the pests and diseases and may be the best option for some farmers in the Arid and semi-arid areas of the region.

Technical Application

To effectively implement resistant breeds:

  • Step 1: Breed livestock with increased resistance against pathogens or other environmental stressors (heat stress).
  • Step 2: Select animals of higher general disease resistance (resistance to several diseases) using a heritable indicator such as natural antibodies.
  • Step 3: Keep record of good performing animals; unhealthy or easily prone of weak animals should not be used for mating; males should be castrated leaving best specimen to breed in subsequent seasons.
  • Step 4: Breed or inseminate the selected cows with desired or selected bulls or semen of the desired traits.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Reduces incidence of disease, results in healthier, more productive/efficient animals.
Increase Resilience
Sale of livestock is a common coping strategy so having more/better livestock to sell increases resilience.
Mitigate Greenhouse Gas Emissions
Potential for more efficient conversion of feed into meat/diary which can reduce emissions per unit production, thus less GHG emissions.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_54_ResistantBreeds_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • With resistant breeds, selecting of male breeds is a long-term climate smart adaptation because they are likely the most resistant.
  • Farmers should identify females in heat and isolate them with selected male animals. This results in productivity increase, higher resilience and cost effectiveness.

Drawbacks

  • Breeding should be controlled to achieve best practice results and farmers should be able to detect when female animals are on heat.
  • Parental performance records should be kept at all times.

Alternative Breeds

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

The Alternative breeds approach involves substitution of breeds, introducing a new (alternative) breed with a current breed to potentially increase production levels in a farm. Breed substitution involves genetic improvement of cattle and goats especially in dairy farming and meat production. Alternative breeds are introduced in order to ascertain competition between breeds based on health, fertility, performance, profits and management requirements. The substitution breeds are picked because there some traits that may be lacking in current breeds at the farm. For example, some farmers in Malawi who have introduced the Black Australop breed of chicken, either by crossbreeding with local chickens or replacing the local chicken altogether. This breed produces much more meat and lays more eggs, which increases farm production and income. This is a climate smart option as it introduces breeds that may require less water or can manage with lower quality feed – thereby reducing costs, and risks.

Technical Application

To effectively leverage alternative breeds:

  • Step 1: Consult with national agricultural research and extension services to identify adaptable breeds available in the country/region, noting type of traits suitable for the particular ecological zone, and how to access stock. Traits to focus-on include health, milk production, disease tolerance, fertility, economic performance and adaptation to climate change and climate variability. Assisting with sourcing potential alternative breeds is a key role for Extension Officers.
  • Step 2: Before selecting a substitution breed, the current breed must be evaluated to identify traits that are lacking, as well as compatibility. This will help in identifying traits that need to be improved.
  • Step 3: Determine the cost effectiveness of the new breed to the area and or farmer, in terms of feed conversion rates, disease resistance, environmental conservation etc.
  • Step 4: Consistently keep record of the livestock performance and behaviour for discussion with other farmers and extension officers.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Switching to alternative breeds can increase productivity in meat, milk and egg production.
Increase Resilience
Changing to alternative breeds can form part of a successful adaptation strategy as climates change.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_51_AlternativeBreeds_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Alternative breeds are used to improve the genetic qualities of livestock.
  • This agricultural practice improves biological diversity, ensures food security, increases farm income and most importantly reduces risk as cross breeds in future will be more resilient to climatic variations.

Drawbacks

  • Requires research to identify suitable breeds.
  • Livestock will require frequent monitoring to ensure cross-breeding is yielding required results.
  • Replacement breeds should also be monitored to ensure they are adjusting to the local conditions.

Assisted Reproduction

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Assisted reproduction refers to artificial insemination, where semen is deliberately introduced to fertilise eggs in domestic animals. Artificial insemination helps in obtaining genetic improvements that yield higher production levels. This practice is more expensive but more efficient than natural reproduction. Artificial insemination reduces the risk of disease transmission and injuries or accidents during mating. Sperm duplication can be done from a single ejaculation to make hundreds of doses and distributed across farmers to have variety of breeds rather than off-spring from single bulls. This prevents inbreeding and promotes hybrid vigour among farmers’. In the southern African context, where most grazing is communal, use of bulls to improve breeds can be challenging as it is difficult to adopt a grazing system that will ensure good quality breeds are able to pass their progeny to the next generation, as young and likely non-superior bulls are likely to mate with cows during grazing. To achieve genetic improvement using open grazing requires controlled grazing systems, e.g. by use of paddocks to manage bulls grazing and mixing with cows.

Technical Application

To effectively implement assisted reproduction using artificial insemination:

  • Step 1: A qualified veterinarian or service provider should be readily available and preferably contracted to carry out the procedure as they should have the necessary training, instruments and facilities to carry out procedures;
  • Step 2: The farmer should suggest the type of breed for his animal, and the veterinarian should advise the farmer on the feasible breed for the cow.
  • Step 3: The farmer has to identify the cow on heat by observing the heat signs (uneasiness, making loud unusual noise, mounting others, standing when mounted, producing mucus discharge from the vulva, etc.)
  • Step 4: The identified animal is isolated from the rest of the animals.
  • Step 5: Communicate with the veterinarian or trained service provider to carry out the procedure by determining the readiness of the cow to undergo the AI service (stage of heat cycle). Early reporting increasing chances of successful conception.
  • Step 6: The veterinarian or service provider then carries out the procedure to the cow after confirming readiness of the animal.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Assisted reproduction increases the chance of conception, producing more cattle for milk or meat.
Increase Resilience
Assisting reproduction in hybridised cattle can form part of an adaptation strategy.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_50_AssistedReproduction_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Artificial insemination reduces injuries and accidents during mating, especially with heavier animals such as cattle.
  • Farmers can collect semen and sell it to other people to obtain cash that will assist them in their daily activities to manage livestock.

Drawbacks

  • It is more expensive but more efficient than natural processes.

Non-Conventional Feeds

Value Chain
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Non-Conventional Feeds (NCF) are either traditional or commercial animal feed-types that are not traditionally utilised as animal feed. These feeds are generally in one of two categories: by-products of agroecological industrial processes, or plants/plant materials from other processes. Examples of industrial by-products include groundnut cake, molasses and cotton seed meal, which are outputs from other processes and are found in proximity of manufacturing points, but often have a short shelf-life. Plant materials can be vegetable peels or locally available crop residues such as maize stalks and other remaining parts of harvested plants not consumed by humans. NCF decrease the demand of land to grow fodder, act as an alternative source for animal feed, resulting in the decrease of food competition between animals and humans ensuring food security. Furthermore, the use of bi-products optimises the use of raw materials and can increase profitability for the producer and the farmer.

Technical Application

To effectively implement NCF practices:

  • Step 1: Determine potential sources of NCFs in the local area and consider if the potential products are suitable (provide enough energy, are digestible, palatable to livestock animals, etc) and require additional investment to access or use.
  • Step 2: Collect for free/negotiate lower rates with producers of agroecological industrial process biproducts or plant materials to gain access to their ‘waste’ materials.
  • Step 3: Determine how sustainable and consistent the supply will be from the providers. If possible, identify a range of suppliers to mitigate potential losses of stockpiled NCFs.
  • Step 4: Before being used as feed, NCF’s from agroecological processes must be appropriately processed - (grinding (8 mm) and pelleting) and mixed into a uniform blend. Hence, labour requirements may increase. This could be mechanised.
  • Step 5: Livestock should be monitored when these feeds are introduced to ensure digestibility of the product for the animals.
  • Step 6: Based on advice from the suppliers of agroecological industrial process biproducts, ensure appropriate storage of materials to avoid loss of nutrition, pests and waste.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Can supplement conventional feed to enhance productivity.
Increase Resilience
Reduces pressure on land to produce fodder.
Mitigate Greenhouse Gas Emissions
As these are by-products of industrial processes, no additional inputs to produce fodder are required.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_40_NonConventionalFeeds_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • The use of NCFs could be a cheap and good source of nutrients for livestock.
  • NCF act as an alternative source for animal feed, resulting in a decrease of food competition between animals and humans.

Drawbacks

  • NCF’s need to be handled properly to avoid formation of moulds that are not good for animal health.
  • Farmers need to acquire skills on how best to conserve these residues for animal consumption, like drying before storing to avoid the loss of nutritional value.

Solar Irrigation

Value Chain
Annual Average Rainfall
Soils
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Solar irrigation systems utilise solar energy to pump water to fields and distribute it through drip irrigation or other systems. Solar irrigation is a low-emission agricultural technology that replaces fossil fuel irrigation pumps reducing greenhouse gas emissions. This approach has the potential to reduce energy costs for irrigation and provide energy independence in rural areas. It provides opportunities to increase productivity by shifting from rainfed to irrigated agriculture in some areas. Solar irrigation systems require intensive management and regular monitoring to ensure the sustainable use of water resources. It requires maintenance of solar panels and irrigation equipment but can quickly yield a positive return on investment. Solar irrigation can be implemented for crop irrigation and livestock watering schemes and can improve food security, produce high value crops for sale, reduce energy costs and drive rural development. Although an expensive technology, solar irrigation can introduce significant operational savings if managed and maintained appropriately. It is considered a climate smart option as it can increase productivity, enable farms to adapt t climate changes and improve resilience, and the use of solar power reduces the use of on-grid, or diesel generator power, reducing emissions.

Technical Application

To effectively implement solar irrigation:

  • Step 1: To determine the solar pump system Crop water requirements, location, water sources etc. Do required research. Is water sourced from an above ground or below ground source?
  • Step 2: Source required materials to implement a solar irrigation system from regional or international suppliers including:
    • Photovoltaic (PV) panels to generate electricity (80-300 W system depending on context);
    • a structure to mount the panels;
    • a pump controller;
    • a surface or submersible water pump; and
    • a distribution system or storage tank for water.
  • Step 3: Identify funding sources as initial costs, as well as maintenance costs, must be considered and modelled prior to purchasing a system. There are regional and international solar irrigation producers.   These costs differ dramatically given the complexity of the context, starting at costs approximately USD $2,400 for equipment only. If drilling is necessary the cost increases significantly depending on depth, substrate etc.  Community-based investment, micro-leasing and rental services can be possible funding models to explore.
  • Step 4: Determine whether there is sufficient solar irradiation for the proposed area – consult and specialist; and/or the national meteorological service.
  • Step 5: Identify area suitable to install solar panels. The area should be easily accessible, and all trees/bush should be cleared. To determine most appropriate site and angle of panels, etc, consult an expert.
  • Step 6: The availability of technical expertise must be considered before implementation to ensure that any technical issues do not result in long period of service disruption.

Maintenance costs and expertise should be considered before installing solar irrigation systems. A detailed cost benefit analysis is advisable. Other key technical considerations include: Legal permits to extract water from the source as water extraction may impact community watershed levels.

Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Plants get enough water. Potential for two or more cropping seasons per year.
Increase Resilience
Predictable yields. Higher production equals increased food security/income and resilience.
Mitigate Greenhouse Gas Emissions
Significant reductions in CO2 emissions compared to grid and diesel-fuelled systems.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_22_SolarIrrigation_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Energy independence will introduce significant cost savings for farmers.
  • Solar powered irrigation can significantly boost productivity, due to increased ability to sustainably irrigate crops.
  • Consistent irrigation can help to mitigate climate impacts, and aid adaptation.
  • Reduces operational costs for diesel or on-grid power to pump water.
  • Reduces greenhouse gas emissions.

Drawbacks

  • Solar irrigation is expensive to implement and there are costs for maintenance. Therefore, savings or access to credit will be required.
  • Access to solar equipment, spares and parts, and the transportation of the above may be complicated and/or expensive.
  • Over and above cost and access technology, other issues such as access to land and water sources are important factors.

Crop Variety Selection

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Selecting crop varieties is a key resilience strategy for farmers facing changing climatic conditions. There are two types of seed varieties: traditional varieties and improved varieties. Traditional varieties have been selected by farmers for their special characteristics and due to many years of selecting the strongest seeds over generations, they are generally adapted to local natural conditions. In some respects, these seeds increase the chance of getting a return on investment in stable environments, but are less likely to mitigate GHG emissions. Traditional crop varieties are usually selected by small scale farmers due to their relatively low cost and availability and can be saved and replanted for further growing seasons. Improved varieties are seeds that have been altered by scientific processes to incorporate desired characteristics using techniques such as following pure line breeding, classical breeding, hybridisation and molecular breeding. Desirable characteristics include higher yields, shorter growing seasons, drought resistance, salt tolerance, etc. Improved varieties are selected when facing adverse conditions such as higher temperatures and/or less predictable rainfall and normally result in the efficient use of water reducing use of energy for irrigation systems. While these seeds offer improvements they are usually commercial products and as a result can be expensive. Furthermore, as they are sold by seed companies availability is driven by demand. Most seed companies protect enhancements using  intellectual property rights that legally limit seed saving and replanting of seeds. In fact, many of these seed varieties have been designed to prevent plants to be reseeded. Thus, seed varieties afford farmers the opportunity to incorporate crops that can be planted to exploit their unique characteristics – traditional or improved, assisting farmers to grow crops that are resilient to changing climates to produce crops that are market-appropriate.

Technical Application

To effectively undertake leverage traditional seed characteristics, or improved crop varieties  the following should be carried out:

  • Step 1: Prior to selecting seed varieties, perform a Cost Benefit Analysis (CBA) to identify how crops will perform and their benefits compared to the costs of the seed, considering the following:
    • Local  farming system(s): land availability per household, crops traditionally grown, access to inputs such as fertilisers,
    • Local environmental conditions: soil conditions, disease, pests, climatic conditions, occurrence of flooding/droughts and other natural disasters.
    • How climate change has impacted or will impact the farming system and how crop variety selection can be a climate- smart practice.
    • Local access to seeds – is seed collected at the householder level, do neighbours exchange seeds, do farmers have access to commercially produced seeds?  Are the costs for accessing commercial, improved seeds manageable or prohibitive? The CBA should weigh the benefits of a new seed against perceived actual or transactional costs for selecting a new seed.
  • Step 2: Obtain information and guidance from local experts, lead farmers, and government regarding best varieties to grow.
  • Step 3: Evaluate results of the CBA and select appropriate seeds that match the farm system/requirements, and available financial resources/access to credit.
  • Step 4: Plant test plots of selected seeds to understand if benefits are realised and demonstrate outcomes with farmers, showing possible alternatives and discuss implementation.
  • Step 5: Following full demonstration and discussion with farmers, implement at farm level – planting the first crop in accordance with guidance provided by seed provider, or traditional knowledge.

Consider in-country seed sources to access different varieties through local extension or research services. When buying seeds ensure that the seeds are adequately dry and look for seed that is certified by a national seed laboratory to ensure that the variety is the highest quality possible. Seeds should be properly stored to avoid high temperatures and humid air to reduce chances of early germination.

Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Selecting improved seed varieties allows the farmer to maintain agricultural productivity as the climate changes.
Increase Resilience
Selection of improved varieties may assist farmers adapt agricultural production to assist adaptation to climate change.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_20_CropVarietySelection_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Exploring crop variety is a key way for farmers to grow more resilient crops within the context of changing climatic conditions. Drought resistant or faster maturing varieties, for example, allow you to respond to reduced rainfall conditions.
  • Improved crop varieties have been altered by scientific processes to incorporate desired characteristics.
  • Understanding local context is important when researching the best crop variety for the area.

Drawbacks

  • Improved crop varieties are commercially sold and can be expensive as they often require additional inputs (inorganic fertilisers etc.)
  • Traditional crops have generally adapted to local climatic and landscape conditions, are widely available and are cost effective for local populations; however, these varieties may not be resilient to climatic changes, and are less likely to mitigate GHG emissions.

Mulching

Value Chain
Annual Average Rainfall
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Mulching is the process of introducing vegetative material to the surface of soil in fields to provide soil cover, reduce evaporation, maintaining an even soil temperature and ultimately improve organic content in soil. These materials can include grasses, crop residues, tree bark and other plant materials, even including seaweed if it is available. These materials should be well decomposed, and mixed well into the top soil when the growing season is over. Mulching improves soil fertility by creating a positive soil environment favouring microbial activity and other promoting beneficial organisms such as earthworms, increases moisture retention, stabilises soil temperatures (protecting soils from both heat and cold), reduces soil erosion and restricts weeds. The temperature control keeps roots and plant bulbs cool in the summer and warm in the winter. It can be utilised on all scales of farm, depending upon the availability of input mulch materials. It is considered a climate smart approach as it sequesters carbon in the soil and promotes soil health which in turn maintains agricultural productivity and the ability of a farmer to adapt to climate changes. In some cases, shredded plastic is sometimes used as a synthetic soil cover, but this is not considered climate smart, as it does not integrate organic matter to the soil, instead introducing plastics.

Technical Application

To effectively undertake mulching the following should be carried out. Tools required: shovel, scissors or shears.

  • Step 1: Gather organic materials from the farm and other external sources if possible. grasses, crop residues, wood chips, tree backs and other plant materials.
  • Step 2: Prepare a location to stock-pile mulch material. A large farm will need a substantial area or pit to achieve this. For smaller operations, mulch can be stored in open-topped barrels and bags punctured for air holes. Storage must allow moisture to contribute to the decomposition process, but no become waterlogged.
  • Step 3: Chop/shred organic material and add to the stock-pile. With larger amounts of material, a motorised, or pedal driven chopper/shredder is useful.
  • Step 4: Allow materials to decompose, but do not leave for extended periods as nutrients and minerals will be lost.
  • Step 5: At the end of the growing season, remove any remaining weeds from the soil surface.
  • Step 6: Spread mulch material over the surface approximately two centimetres deep.
  • Step 7: In firmer or more compacted top soils, lightly work the mulch into the upper soil.
  • Step 8: Lightly water area where mulch has been applied.

Mulch should be applied annually as mulching materials will decompose.

Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Improving soil health through practices such as mulching promotes productivity.
Increase Resilience
In changing climates, with shifting rain patterns, and increasing temperatures, practices such as mulching help retain soil health.
Mitigate Greenhouse Gas Emissions
Mulching provides soil cover, promoting retention of carbon in the soil, and also introducing organic content to the soil itself.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_13_Mulching_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Mulching improves soil structure, fertility and quality, stabilising soil temperature and retaining moisture.
  • Mulching can increase nutrient content in the soil.
  • Mulch can contribute to reducing soil erosion.
  • Mulching contributes to preventing weeds from growing.
  • If not used, mulch can be sold to other farmers.

Drawbacks

  • Despite positive benefits, requires substantial labour inputs, hence the need for on-farm labour resources, or the ability to hire.
  • Mulch can spoil if not managed correctly.
  • Considerable quantities of mulch are needed to cover fields.
  • Again, if not managed correctly, can harbour pests, diseases and weeds (seeds).
  • If over-applied, can result in a toxic environment.

No Tillage

Value Chain
Annual Average Rainfall
Soils
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

No-tillage or reduced-tillage farming involves growing crops without ploughing or reducing the use of machinery in preparing fields for planting. Excessive tillage can have major impacts on soils and the environment including loss of organic matter and soil organisms, increased soil erosion and pesticide runoff, reduced soil fertility, loss of soil structure, etc. Thus, implementing no- or reduced-tillage can help farmers in conserving soil quality and in many cases, increase crop production.

In implementing no-tillage processes, land is not or is minimally disturbed and crop residues are normally left on the soil surface with minimal use of implements. Reduced tillage practices include technological changes such as using more efficient ploughing tools and/or implementing strip-till, zone-till or ridge-till processes. Most reduced tillage systems are implemented in conjunction with cover crops and mulches to protect soil structure.  Tilling by hand or animal means are considered reduced tillage methods.

The adoption of no or reduced tillage practices reduces the amount of fossil fuels consumed by farmers and increases carbon sequestration as soil carbon is not exposed or released in the atmosphere and is thus a climate smart practice.

Technical Application

Switching to no-till or reduced tillage should be planned at least a year in advance so preparations can be made necessary implements can be obtained. Implements should match farm labour availability. You will also need to decide if no till or reduced tillage methods are appropriate based on farm area and desired crops, and start with a small area to determine feasibility. Cereal and legume crops are suitable for no tillage while vegetables and other crops often require some tillage – i.e. reduced tillage.

There are two forms of no-tillage, conventional and organic. Conventional no-tillage includes the application of herbicides to manage weeds, prior to and after planting. Organic no-tillage does not incorporate the use of herbicides, but includes other methods for controlling weeds, including cover crops, crop rotation and free-range livestock. Organic no-tillage is more suitable as it assists mitigate any climate change impacts on the farm.

No till

  • Step 1: Prepare fields using conventional (herbicide application) or organic processes include cover crop (Technical Brief 15) and crop rotation (Technical Brief 09).
  • Step 2: Test soils – aiming to balance nutrient and pH levels. In the case of acidic soils, add small amounts of lime each year.
  • Step 3: Avoid soils with bad drainage, as they become water-logged.
  • Step 4: Level the soil surface, removing uneven areas to assist even seed planting.
  • Step 5: Eliminate soil compaction.

Reduced Till

  • Step 1: This approach is similar to regular tillage, but with significantly less disturbance of the soil. Tilling is only done where needed, and the rest of the soil is undisturbed.
  • Step 2: Strip-tillage or zone-tillage involves tilling and seeding in 15 cm strips leaving areas in-between undisturbed.
  • Step 3: Ridge-tillage involves preparing ridges post-harvest and letting them settle over time to be planted the next seeding period; with ridges not more than 60 cm apart.

More information of each of these specific practices should be sought prior to implementation.

Crop rotation is a complimentary farming method when practicing no-tillage, as it promotes maximum biomass levels for permanent mulch cover, while controlling weeds (with pre- and post-emergent herbicides), pests, and diseases, as well as improving soil nutrition and fertility.

Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Improved soil structure and increased microbial and invertebrate activity in the soil makes nutrients more available to plants.
Increase Resilience
Increased water infiltration and soil biodiversity mitigates the effects of short-term dry spells.
Mitigate Greenhouse Gas Emissions
Locks more carbon in the soil. Reduced ‘passes’ in mechanised systems reduces fuel inputs required.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_12_No%20Tillage_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Increased soil fertility, organic matter and soil structure, and beneficial organisms (earthworms, etc).
  • Reduced compaction of soils.
  • Prevention of soil erosion.
  • Reduction in fossil fuel consumption.
  • Increased soil carbon sequestration.

Drawbacks

  • A positive response can be delayed for up to three years.
  • Effective weed management may require the application of herbicides.
  • Possible decreases in crop productivity if not carried out effectively.
Subscribe to Positive

Funding Partners

4.61M

Beneficiaries Reached

97000

Farmers Trained

3720

Number of Value Chain Actors Accessing CSA

41300

Lead Farmers Supported