Skip to main content

Zai Pits

Value Chain
Annual Average Rainfall
Soils
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Zai pits are based on a traditional technology approach originating from West Africa that assists farmers working on marginal and degraded land. This approach involves the concentration and conservation of nutrients and water at the crop root systems through the digging of small pits (Zai pits) and filling them with compost, with the aim of increasing soil fertility and water infiltration. Zai pits are dug between planting season and filled with organic fertilisers/composts, which attract worms, termites and other insects, creating mix of material that can be used to fertilise crops. Farmers plant crops directly in these pits, prior to rains and water will infiltrate the pits more easily than the surrounding soil. Applying this technology is laborious to implement, but it  has been found to assist farmers in times of drought or in arid conditions to produce successful crops by maximising the resources available. Zai pits allow for mitigation of desertification in degraded land and an economic use of resources in conditions of scarcity, especially in resource constrained environments

Technical Application

To effectively implement Zai Pits the following should be carried out:

  • Step 1: Zai pits should be dug with a diameter of 30 cm to 40 cm and 10 cm to 15 cm deep. 
  • Step 2: Pits should be spaced 70 cm to 80 cm apart resulting in approximately 10,000 pits per hectare.
  • Step 3: The farmer should place 2 – 3 handfuls (200 g to 600 g) of organic fertilisers or compost in each pit.
  • Step 4: Holes that are dug between planting seasons will trap wind eroded soils, which are fertile and form good soils for plating crops.
  • Step 5: It is recommended that 3 tonnes of fertiliser/compost per hectare be available.
  • Step 6: Farmers should consider planting crops in these pits prior to periods of rain.
  • Step 7: Repeated application of Zai pit technology on an annual basis will increase productivity of degraded land in the long term.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Increased soil fertility from zai pit implementation improves agricultural productivity.
Increase Resilience
This approach to fertilising crops and enhancing nutrient content can aid adaptation, especially in arid and semi-arid climates.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_26_ZaiPits_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Earth that is excavated from the hole dug can be used to form a ridge around each pit to help capture and retain water.
  • Zai pit technology can be applied to marginal or degraded land or in semi-arid to arid conditions to allow farmers to rehabilitate soil/land and productively grow crops.
  • Zai pits allow for nutrient concentration and water infiltration that provides improved conditions for crops to grow.
  • Land that was previously degraded can become productive through the use of zai pits.

Drawbacks

  • Implementing zai pits is laborious and takes significant people power to implement – but may be the only option in marginal environments.

Saving Seeds

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

The process of saving one’s own seed involves the collection of seeds from the best performing (most yield, largest size, early maturing or other desired traits, etc.) plants from one season to plant them in the next cropping season. The aim of this practice is to select seed from parent plants in the hope that desired characteristics are replicated in the next generation of plants. Seeds that have been selected will likely be adapted to local farming conditions including soil types and rainfall amounts. The seed most likely to carry intergenerational traits (size, colour, water use efficiency, and other biophysical traits) are open-pollinated (those plants pollinated by birds, insects, wind, etc.) seed varieties as they are cross-pollinated by the same type of crop. Different crops have different reproduction cycles with some species flowering or producing seeds annually, biennially or on a perennial basis. Thus, understanding seeding time is important for farmers aiming to save their own seeds. Almost as important as selecting the correct seeds is seed storage, which must be done correctly to avoid spoiling and losses. Seed saving is a cost-effective measure for farmers to employ and helps them avoid having to buy seeds at market on an annual basis. Seed trading or community seed banks provide a climate resilience strategy as they secure farmers access and availability of diverse, locally adapted crops and varieties while enhancing indigenous knowledge. Often crops from hybrid seeds or improved varieties do not generate viable seeds ensuring that seeds cannot be saved and must be purchased on an annual basis.

Technical Application

To effectively undertake seed saving:

  • Step 1: Communicate with national agricultural extension and local farmers regarding seed harvesting timing and practices for local crop species.
  • Step 2: Clear field and sow desired crop using climate smart agriculture practices.
  • Step 3: Monitor plant life cycle and ensure that seeds are extracted correctly and are not spoiled in the process. Employ local expertise to ensure seed harvesting is carried out correctly.
  • Step 4: Post-harvest, seeds should be adequately dried and then transferred to proper storage facilities.
  • Step 5: store seeds in dry, cool, and dark locations. This will prevent them from spoil. Different strategies for seed storage are implemented around the region so local expertise should be sought.
  • Step 6: Ensure that pests are excluded from storage areas to prevent loss or spoil (Technical Brief 61-65).
  • Step 7: Community seed banks or seed trading should be established to allow farmers to integrate different varieties into their farming system that are resilient to local climatic conditions
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Can reduce losses from pests and diseases.
Increase Resilience
More predictable yields.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_21_SavingSeeds_2019-10-17_0_0.pdf
Benefits and Drawbacks

Benefits

  • Climate resilient method for crop diversification.
  • Many farmers have been using this technique for generations and this should be encouraged.
  • Cost effective method for sustainable crop growth.

Drawbacks

  • Attention must be closely paid to plant lifecycle and seeds should be collected at appropriate time.
  • Storage methods should be employed to manage pests and rot.

Weed Control

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Weeds are any unwanted plant species that compete with crops for sunlight, water, nutrients, air and space, hindering crop growth and in some cases are even toxic to crop plants. Weed control measures can be applied in an integrated manner to help prevent the growth and spread of weeds in agricultural systems. An integrated weed management approach aims to restrict weed growth until a crop is well established and can outcompete weeds. This integrated approach includes biological, chemical, cultural and/or physical tactics to combat weed spread and growth and these practices can be more cost effective than herbicide applications. Integrated weed management is climate smart as it combines multiple climate smart practices that increase farmers resilience, limits GHG releases and increases productivity. Options for weed control include crop rotation, intercropping, cover crops (which can be used as green manure or mulch), mulching, seed-bed preparation, livestock grazing, seed/variety selection, mowing, and hand-weeding.

The application of integrated weed control is climate smart as it reduces herbicide application and reduction in machinery usage (i.e. through no-tillage practices).

Technical Application

To effectively undertake weed control measures:

  • Step 1: Review weed control measures - crop rotation, intercropping, cover crops, mulching, seed-bed preparation, livestock grazing, seed/variety selection, mowing, hand-weeding and adjustments to tillage practices - and determine which methods are available and appropriate for the farming system and farmer. Two or more of these techniques can be applied to assist in ensuring farmers have more chance of success. Understand possible negative impacts of each weed control method.
  • Step 2: Improve weed identification knowledge in specific areas.
  • Step 3: Prevent weeds from spreading – clean clothes, animals, machinery, vehicles to limit weed transport; use only well stored/rotted manure (4-5 months) (Knowledge Product 16), include fencing, irrigation and other farm ‘breaks’ where possible
  • Step 4: Apply a combination of weed control methods including – cover crops (Technical Brief 15), mulching, intercropping (Technical Brief 07), crop rotation (Technical Brief 09), livestock grazing, seed selection (Technical Brief 20), mowing, hand-weeding. Try to avoid the application of herbicides, tillage and burning.
  • Step 5: monitor and document most effective weed management strategies for each farmer, and use lessons learned from the area with other farmers where applicable.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Weed control supports agricultural productivity by removing competition while reducing the need for herbicides.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_19_WeedControl_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Integrated weed management involves employing two or more climate smart practices.
  • Reduced consumption of chemicals
  • Cost effective methods that do not require additional inputs.

Drawbacks

  • More time consuming than applying herbicides or other more destructive methods.
  • Strategy requires careful planning.
  • May not be 100% effective.

Trash Lines

Value Chain
Annual Average Rainfall
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Trash lines are the incorporation of lines of organic materials spread across contours of hilly agricultural fields - strips of heaped straw or weed materials that have been collected during primary cultivation of the land. Trash lines have been found to direct runoff in field and act as an erosion control method. Through decomposition, the trash line material acts as a type of compost adding nutrients to the soil, adding more organic material year on year, should the farmer continue to build this line. This is a climate smart approach as it contributes to soil health, capturing more nutrients and carbon in the soil, and in turn promoting sustainable agricultural productivity. In changing climates, implementation of this practice can contribute to adaptation strategies.

Technical Application

To effectively undertake trash lines:

  • Step 1: Collect straw, stalks, picked weed or other organic materials from field or surrounding area.
  • Step 2: Establish contour lines using method identified in contour planting (Technical Brief 16).
  • Step 3: Contour lines for trash lines should be spaced between 5 to 10 m apart.
  • Step 4: Heap straw along contour lines on hilly or sloped fields to be approximately 0.5 m wide and up to 0.3 m in height.
  • Step 5: Trash should be piled on annually or as the field is prepared. Lines can be maintained for a few years and then decomposed materials can be mixed into the soil.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Contribute to soil health and therefore agricultural productivity.
Increase Resilience
In changing climates, strategies such as this can contribute to retain and improving soil health.
Mitigate Greenhouse Gas Emissions
Helps retain carbon in soil.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_14_Trashlines_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Low cost option for soil and water conservation on sloped fields.
  • Increase of organic materials in fields.
  • Green manure (Technical Brief 02) production in the field.

Drawbacks

  • Increased workload to implement trash lines but low effort to maintain.

Mulching

Value Chain
Annual Average Rainfall
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Mulching is the process of introducing vegetative material to the surface of soil in fields to provide soil cover, reduce evaporation, maintaining an even soil temperature and ultimately improve organic content in soil. These materials can include grasses, crop residues, tree bark and other plant materials, even including seaweed if it is available. These materials should be well decomposed, and mixed well into the top soil when the growing season is over. Mulching improves soil fertility by creating a positive soil environment favouring microbial activity and other promoting beneficial organisms such as earthworms, increases moisture retention, stabilises soil temperatures (protecting soils from both heat and cold), reduces soil erosion and restricts weeds. The temperature control keeps roots and plant bulbs cool in the summer and warm in the winter. It can be utilised on all scales of farm, depending upon the availability of input mulch materials. It is considered a climate smart approach as it sequesters carbon in the soil and promotes soil health which in turn maintains agricultural productivity and the ability of a farmer to adapt to climate changes. In some cases, shredded plastic is sometimes used as a synthetic soil cover, but this is not considered climate smart, as it does not integrate organic matter to the soil, instead introducing plastics.

Technical Application

To effectively undertake mulching the following should be carried out. Tools required: shovel, scissors or shears.

  • Step 1: Gather organic materials from the farm and other external sources if possible. grasses, crop residues, wood chips, tree backs and other plant materials.
  • Step 2: Prepare a location to stock-pile mulch material. A large farm will need a substantial area or pit to achieve this. For smaller operations, mulch can be stored in open-topped barrels and bags punctured for air holes. Storage must allow moisture to contribute to the decomposition process, but no become waterlogged.
  • Step 3: Chop/shred organic material and add to the stock-pile. With larger amounts of material, a motorised, or pedal driven chopper/shredder is useful.
  • Step 4: Allow materials to decompose, but do not leave for extended periods as nutrients and minerals will be lost.
  • Step 5: At the end of the growing season, remove any remaining weeds from the soil surface.
  • Step 6: Spread mulch material over the surface approximately two centimetres deep.
  • Step 7: In firmer or more compacted top soils, lightly work the mulch into the upper soil.
  • Step 8: Lightly water area where mulch has been applied.

Mulch should be applied annually as mulching materials will decompose.

Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Improving soil health through practices such as mulching promotes productivity.
Increase Resilience
In changing climates, with shifting rain patterns, and increasing temperatures, practices such as mulching help retain soil health.
Mitigate Greenhouse Gas Emissions
Mulching provides soil cover, promoting retention of carbon in the soil, and also introducing organic content to the soil itself.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_13_Mulching_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Mulching improves soil structure, fertility and quality, stabilising soil temperature and retaining moisture.
  • Mulching can increase nutrient content in the soil.
  • Mulch can contribute to reducing soil erosion.
  • Mulching contributes to preventing weeds from growing.
  • If not used, mulch can be sold to other farmers.

Drawbacks

  • Despite positive benefits, requires substantial labour inputs, hence the need for on-farm labour resources, or the ability to hire.
  • Mulch can spoil if not managed correctly.
  • Considerable quantities of mulch are needed to cover fields.
  • Again, if not managed correctly, can harbour pests, diseases and weeds (seeds).
  • If over-applied, can result in a toxic environment.

Crop Diversification

Value Chain
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Many farmers grow one crop repeatedly on the same field over-and-over again. Crop diversification is the cultivation of several crops of a different species or variety (of one crop) in one plot at any given point in time. The main advantage of implementing crop diversification is that it enhances household climate resilience through reducing risk of monocrop failure due to pests, disease, low rainfall and other climate risks.

Employing crop diversification may also provide opportunity of more diversified income sources and dietary diversity. Farmers can simultaneously grow both food crops, fodder and cash crops in an attempt to increase household food security and improve household incomes. There are also indications that crop diversification can increase crop productivity, which for poorer households can have significant positive impacts. For better capitalised farms, return on specialisation may be higher, and will likely not realise the desired returns.

Technical Application

To effectively undertake crop diversification:

  • Step 1: Identify potential market opportunities for alternative crops in local/sub-national/national area.
  • Step 2: Determine crops that farmer wishes to plant and the purpose whether it be household food stuff, cash crop or fodder crop.
  • Step 3:  Establish local demonstration plots at the local level growing non-traditional crops that have market demand and can be incorporated into local farming systems.
  • Step 4: Prepare smaller plot through clearing and weeding. CCARDESA recommends a no tillage approach (Technical Brief 12).
  • Step 5:  Secure seeds of desired crops and follow planting guidance if the crop has not been previously grown. Sow seeds on small plot.
  • Step 6: Track progress of crop and harvest and process as required.
  • Step 7: Discuss cost benefit of growing diversified crops with farmers.
  • Step 8: Farmers should gradually integrate a new crop(s) into their farming system to ensure that they are comfortable with diversifying at a greater scale.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Increased yields of rotated crops due to lower incidence of pests/ diseases.
Increase Resilience
Help reduce exposure to pests/diseases and drought/heat stresses and market fluctuations by having greater diversity.
Mitigate Greenhouse Gas Emissions
Potential to lock more carbon in the soil, especially if fallows or cover crops are incorporated.
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_10_Diversification_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Diversification provides opportunity to increase farmer resilience.
  • Substantial opportunity for increased crop productivity
  • Food security, farm income, household nutrient improvements.
  • Scaled up as farmers gain confidence.

Drawbacks

  • Farmer hesitation.
  • Require enough space to introduce additional crop.
  • Failure in diversified variety/species may dissuade farmers in the future.
  • Not encouraged for better capitalised farms, as returns to specialisation can be higher.

Crop Rotation

Value Chain
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Monocropping in one field for many subsequent years will cause nutrient depletion in that field and lead to less productive returns. Crop Rotation is the process of planning the planting and harvesting of different crops planted on the same field over subsequent growing seasons, allowing less nutrient depletion and if applied effectively, increasing soil nutrients through nitrogen fixing etc. This farming practice also assists with weed control, prevents soil erosion, and is the most efficient and economical way to break the biological cycles of plant pests and diseases, mitigating the effects of pests/disease as they become more prevalent due to climate change and helping farmer diversify crop production.  Research has shown that rotation between nitrogen consuming crops such as maize and nitrogen depositing plants such as soybeans can provide a healthy balance of nutrients. This farming practice is advantageous for smallholder farmers who are less able to leave fields fallow for extended periods of time, as well as for commercial farmers wanting to reduce pesticide use. It is seen as climate smart as it breaks pest and disease cycles, returning nutrients to the soil, thereby supporting more predictable yields in times of climate pressure, and locking more carbon in the soil.

Technical Application

An example of crop rotation is maize, followed by a legume. Grain SA has reported a 12 % increase in maize production following rotation with legumes such as cowpea. Furthermore, the legume yields often increase following rotation with the grain crop, and sometimes responding differently to the crop type. For example, soybean yield has been measured at 20 % higher following sorghum than maize. To effectively undertake crop rotation:

  • Step 1: Determine which cereal crops and legumes are available in the area of interest.
  • Step 2: Prepare land through clearing, weeding. No-tillage approaches are preferable (Technical Brief 12).
  • Step 3: Plant a leafy cereal crop (maize or sorghum) and let the crop mature and harvest once ready. Once harvested, bend stalks over to increase biomass.
  • Step 4: If possible, allow field to fallow for a short period. If this is not possible, practice cover cropping (Technical Brief 15).
  • Step 5: Prepare land again, and sow second crop, usually a legume to improve soil structure and fertility. Harvest crop once ready.
  • Step 6: Repeat process. It is possible to include more than two crops into crop rotation if desired.

It is advisable to carefully monitor yield for demonstration purposes, run test plots if necessary.

Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Breaks pest and disease cycles. Returns nutrients to soil.
Increase Resilience
More predictable yields from each crop and a reduced risk of crop loss.
Mitigate Greenhouse Gas Emissions
Helps to lock more carbon into the soil if fallow/cover crops/green manure is included. Can reduce fertiliser requirements.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_09_CropRotation_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Improved soil fertility and protect soil.
  • Effect and cost-effective way to break pest/disease cycle.Food security/farm income increase.
  • Food security/farm income increase.
  • Nutrient fixing.

Drawbacks

  • Time should be allowed between harvest and planting of different crops.
  • Cultural shift away from traditional crops.
  • Limited market opportunities for non-traditional crops.

Biochar

Value Chain
Annual Average Rainfall
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Biochar refers to a fine-grained charcoal, rich in organic carbon compounds, used to improve soil quality through enhanced nutrient and water holding capacity of soil, reducing total fertiliser needs. Biochar is a stable solid produced from the controlled burning of plant and waste feedstock, including wood chips and pellets, tree bark, crop residues (straw, maize stovers, nut shells and rice hulls), grain, sugarcane bagasse, chicken litter, diary manure, sewage and paper sludge. Biochar is used as a soil conditioner as part of soil amendment strategies, improving the workability of soil, particularly those with heavy clay components.. The application of biochar to soil is a strategy to minimise the climate and environmental impact of cropland systems, such as the application of synthetic fertilisers, and improve soil quality through enhancing its physical-chemical characteristics. This agricultural practice improves soil structure, nutrient cycling and water retention, and the high stability of biochar carbon compounds contributes to the reduction of green-house gas emissions by increasing carbon sequestering in soils. Biochar is shown to be effective in improving soil conditions in acidic, sandy and clay-rich soils, improving the physical characteristics, and is classified by the FAO classifies as an adaptation strategy and contributes to mitigation of climate change as the processes captures and stores carbon in soils create other secondary socio-economic benefits, through additional fuel sources, and economic opportunities for production. Biochar can either be purchased or produced on-farm on a small or large scale. Collective action may benefit communities, so discussion with neighbours and community leadership may be necessary, especially if a biochar.

Technical Application

To effectively implement biochar the following should be carried out. Tools required – shovel and a metal sieve.

  • Step 1: Acquire charcoal from local vendor, and sieve or grate the charcoal into fine material in a pile. Biochar should not be applied to soil directly after production. It should be allowed to ‘rest’ for one to two months.
  • Step 2: Rotate the pile every 2-days for a period of up to 10-days (total).
  • Step 3: Prior to application, aim to wet (but not waterlog) biochar stock with water or preferably urine. If done when still warm, it will fracture the charcoal, increasing surface area for absorption.
  • Step 4: Spread the biochar evenly across soil prior to planting and let it settle or mix with the top layer of soil. One to three kg/m2 is recommended, depending on the degree of soil required.
  • Step 5: Regularly monitor soil pH, water retention and soil texture, keeping records if relevant to ensure that improvements are realised, and negative impacts do not arise.

Biochar can be produced on-farm, but will require collection of plant and waste feedstock (see above). Biochar can be produced on-farm using a trench. A biochar trench is a dug recess where crop residues are burned to create charcoal. Tools required are a shovel and one or more roofing sheets (one-metre long).

  • Step 1: Dig trench 50 to 70 cm deep, and one to two metres long, ensuring that roofing sheets fully cover the trench void.
  • Step 2: Start a fire in one end of the trench, throwing in loose crop residue or other organic waste, keeping the fire under control (not creating large flames and smoke).
  • Step 3: Keep fire burning until trench is full of char.
  • Step 4: When the trench is full, and flames have burned-out, cover the trench with the roofing sheet, sealing edges with loose soil, trampling it down to ensure closure.
  • Step 5: Leave the covered trench for five to six hours to extinguish.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Makes nutrients more available to plants and increases water retention. Can increase pH.
Increase Resilience
Improves water retention. Remains in the soil for a long time.
Mitigate Greenhouse Gas Emissions
Capturing carbon in soils thereby reducing emissions.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_03_Biochar_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • The production and application of biochar reduces GHG emissions of cropland systems due to the properties of the biochar itself, and reduction in the application of synthetic fertiliser.
  • Can improve physical and chemical composition of soil, especially in acidic, sandy and clay-rich soils; soil nutrient cycling and water retention.
  • Can reduce fertiliser and irrigation requirements.
  • Potential socio-economic opportunities for biochar producers, if not produced on-farm.
  • Improved food security from production of secondary fuel source.
  • Provides an appropriate and sustainable mechanism for dealing with crop residues and biomass.
  • Can be mixed with compost during application to increase performance of soil amendments.

Drawbacks

  • Requires sustainable non-wood supply of organic matter for production so as not to increase deforestation.
  • Long-term impacts not fully understood.

Green Manure

Value Chain
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Green manure (otherwise known as cover crops), is a climate smart fertiliser process that involves growing plants (mainly legumes) and distributing uprooted or sown crop-parts to wither and cover soil. It provides soil coverage to enhance biological, physical and chemical properties of soil while mitigating soil erosion, supressing weed growth, adding biomass to soils, improving soil structures, promoting biological soil preparation, and reducing pests, diseases and weed growth. These functions can increase economic return, reduce the need for herbicides and pesticides, while increasing productivity and potentially the quality of crops. It can also increase soil nitrogen, improve soil fertility, conserve soil humidity and reduce fertiliser costs. Green manure also has low management costs, presents good conservation characteristics, and improves biodiversity. Green manure is a feasible and sustainable option for farmers to improve soil quality and productivity, depending on local context and availability of different leguminous plants that best fit for farmers’ cropping systems. Examples of leguminous plants that can be used in southern Africa include: Mucuna (Mucuna pruriens); Sunhemp (Crotalaria juncea), Lab-lab (Lablab purpureus); Pigeon pea (Cajanus cajan); Cowpea (Vigna unguiculata) and Butterfly pea (Clitoria ternatea). Green manure has climate smart benefits as contributes to sustainable maintenance of agricultural production without the use of chemical fertilisers and depending upon the cover crop can contribute to adaptation of agricultural practices to climate change. Furthermore, coverage of soil with additional plant material can assist with carbon sequestration in soil. Not only does growing a secondary green manure crop provide a soil amendment benefit, but the crop can also be used as fodder for livestock. As the most common green manure plants are legumes, the pods and seeds can be fed to livestock while leaving the crop residue to perform the cover crop function in in the fields.

Technical Application

To effectively apply a green manure approach, the following should be considered:

  • Step 1: Select legumes that grow well under local conditions and in local soils. Green manure crops should be resilient and require few crop management practices. A thorough investigation should be made to ensure that green manure crops are appropriate for the local conditions in terms of rainfall, climate, soil pH and texture, and salt tolerance.
  • Step 2: Identify the appropriate time for planting the green manure crop to ensure growth, but not impacting the primary crop. Especially if the secondary crop is a climber/creeper. Main crop may need to be mature before planting the manure crop, as if a creeper, it may outcompete or constraint growth of maize or sorghum plants.
  • Step 3: If seeking to enrich soil properties, the farmer must allow crop residue to remain in the soil longer. This is particularly relevant with multiple uses – e.g. soil amendments and livestock fodder. In these cases, pods can be harvested for fodder, and the remaining plant residue left in the field to cover the soil.
  • Step 4: Crop planting should be alley cropped between the primary crop rows, allowing management of the primary and secondary crops, also reducing the competition between the primary and the secondary crop. If the secondary crop also has pest management properties, it may be beneficial to consider boundary planting.
  • Step 5: When harvesting the secondary crop, the farmer should consider leaving the residue in the ground. If it is uprooted, it should left on the soil surface. A common mistake is to remove it from the field and accumulate it in one location, missing the benefits of cover-crops, and exposing the residue to decay.

Unless local examples are available, small test plots should be used to test different cover crops to determine which is the most appropriate, and if necessary, demonstrate value to farmers and communities. As the secondary (green manure) crop is not a direct cash-crop, you may need to ensure expectations are measured. It may take several years to develop enough green manure crop to contribute to crop production; hence, crop production has to fit around existing cash/subsistence crops. Furthermore, benefits may not be realised within a single planting season., e.g. Nitrogen may only be available in the soil in the subsequent season.

Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Green manure can maintain or increase agricultural productivity through improved soils.
Increase Resilience
Adjustment of practices to include cover crops allows farmers to diversify crop types, and produce their own fertilisers.
Mitigate Greenhouse Gas Emissions
Reduction in carbon released from soil.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_02_GreenManure_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Green Manure is a non-tillage method that promotes soil fertility through enhancement of soil organic content. In doing so, it mitigates erosion, maintains soil humidity, and promotes biological activity.
  • Many green manure plants can be used to feed livestock if there is an excess
  • Green manure cover crops also make organic matter to apply – compost requires work and time to develop, whereas this approach sees it added immediately.
  • Cover crops can reduce weed competition by shading soil.
  • If using legumes, they can thrive in poor quality soils.
  • Cover crops such as Cow pea can also be used for animal and human consumption.

Drawbacks

  • Require access to seedbanks for legumes and other viable cover crops.
  • May require the testing of crops in test plots prior to implementation.
  • If so, community action may be required to test varieties and make decisions.
  • Farmers may require more land to plant the same amount of the main crop, as they need to be intercropped with the cover crop. This can be unattractive to some farmers.

Compost

Value Chain
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Compost is a biological process where micro-organisms recycle decaying or decomposing organic matter to produce a soil conditioner that can be applied as an additive to improve soil conditions. Composting takes place in the presence of oxygen (aerobic conditions), and with adequate temperature and moisture, transforming organic matter into plant-available nutrients. Compost can comprise organic plant and/or animal matter, and/or residues including leaves, dead roots, manure, urine, bones, and nematodes, amongst other organic materials. As it is generally rich in nutrients, the application of compost can naturally fortify soils, acting as a fertiliser, with soil humus or natural pesticide increasing the resistance of plants to diseases, foreign species and insects. The amount of organic matter in different soils depends on the soil type, vegetation species, and other environmental conditions, such as moisture and temperature. Thus, the application of compost may add important nutrients to soils that can benefit vegetation growth. Rainfall, temperature changes and other biophysical factors may result in a diminishing return of compost benefits to soil health. Therefore, the application of compost to soils should be a continuous practice, in order to increase physical, chemical and biological benefits. There are two main composting systems: Open Systems (compost piles or pits) or Contained Composting – see technical application below. This is a climate smart approach as it recycles readily available organic materials from a farm for use within the farming system, plus it avoids the use of chemical fertilisers. Composting is a climate smart approach as it reduces the need for chemical fertilisers, contributes to soil amendments that support adaptation to climate change, and helps retain soil fertility, which in turn aids agricultural productivity.

Technical Application

To effectively undertake composting:

  • Step 1: gather compostable materials - rests of harvests, animal manure and dung, organic kitchen waste (fruit and vegetable waste), other food waste, edible oils and fats, wood shavings, paper products (not printed), hair cut waste. Avoid non-compostable materials such as chemical residues, glass, metals, plastics, carcasses, cooked leftovers or meat.
  • Step 2: Chop/cut materials to achieve optimum particle size is between 5 – 20 cm – this will assist decomposition. Wire mesh can be used to sift smaller non-organic particles.
  • Step 3: Add water regularly using a watering-can to assist decomposition, ensuring that the materials do not become water logged.
  • Step 4: Using a pitchfork or shovel, turn-over or rotate compost materials regularly as oxygen is a key component to the decomposition process.
  • Step 5: If available, add earthworms (known as vermiculture) to compostable material, which enriches soil, enhances plant growth (hence yields) and suppresses disease.
  • Step 6: Once compost material has been decomposed (three months to two years, depending on climate and composting material) it will be a fine, dark material. Screen the material to remove large particles and mix with soils in gardens or fields prior planting and around plants throughout growing period.
  • Step 7: If compost does not include animal manure/waste it can be applied to crops as an organic fertiliser at any point up to harvest. If it does include animal waste, it can be incorporated into soil not less than 120 days prior to harvest, especially where edible portion of crops has been in contact with the soil surface.

Additional notes:

  • For Open Composting System (Piles): select a level area or dig a pit with a level bottom away from developed areas, chop collected materials into piles, turn over or rotate and add water to material regularly (weekly or bi-monthly). Cover pile if there is heavy rain to prevent materials from washing away and becoming water-logged.
  • For Contained Composting Systems: construct a container unit from mesh, wooden panels, bricks and other suitable building materials, fill the container with chopped material, turn over or rotate, and add water to material regularly (weekly or bi-monthly). Keep compostable material covered.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Retaining or improving soil fertility to ensure increased or sustained agricultural productivity.
Increase Resilience
As climate change places increased pressure on land management, compost can contribute to soil amendments to aid adaptation.
Mitigate Greenhouse Gas Emissions
Use of compost to amend soil avoids the use of chemical fertilisers and reduces greenhouse gas emissions.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_01_Compost_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Composting is an effective and low-cost option to recycle organic matter that can improve soil nutrient health.
  • Composting in scalable, based on need and available organic materials.
  • Moisture and oxygen are very important. Ensure that compost materials are moist and regularly rotated to optimise decomposition conditions.
  • Cover during extreme weather events (heavy rain, extreme heat, high wind etc.).
  • Add earthworms to the material to increase decomposition and speed up process.
  • Compost should be regularly added to soils to increase soil organic nutrients.

Drawbacks

  • Developing productive compost material, with beneficial nutrient is not a quick process, and can take up to two years for productivity to reach optimal outputs.
  • Faster methods require more energy and inputs as significant amounts of organic material is needed, material must be shredded/chipped, and compost piles need to be turned every three days.
  • While composting is scalable, the amount of available organic material may be a limiting factor.
  • Composting plant material must include removal of any diseased plant material and weed seeds should be avoided.
  • Earthworms will need to be sourced to improve the productivity of composting operations.

Earthworms can be sourced from a worm farm – if worm farms are not available, you can create your own by purchasing worms from an agricultural supplier. Worm farms can also be purchased as kits.

Subscribe to No

Funding Partners

4.61M

Beneficiaries Reached

97000

Farmers Trained

3720

Number of Value Chain Actors Accessing CSA

41300

Lead Farmers Supported