Skip to main content

Resistant Varieties

Value Chain
Annual Average Rainfall
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Resistant varieties are new crop varieties that improve yield production, are resistant to pests and diseases, more tolerant to drought, salinity or other changing or undesirable environmental conditions. Crop plants used within this practice are usually only resistant to a limited number of undesirable characteristics e.g. pests or drought – but usually not both, and some other desirable traits may be lost while others may be strengthened. Hence, careful selection of candidate species must be undertaken. Resistance varieties common in southern Africa include drought resistant maize, sorghum, rice and cowpea (beneficial legume for intercropping) strains, striga (witch weed) resistant sorghum and maize strains, and others all help farmers adapt to changing climate conditions, by being able to farm crops that survive the increasingly variable climate, which can result in less rainfall, or the presence of new pests. Striga results in crop losses totalling over USD 1 billion per year, whereas research has shown that planting climate resilient maize varieties can lead to up to a 25 % increase in crop yields.

Exploring new pest or drought resistant varieties in a regional will require demonstration and testing in ‘test plots’, so extension workers can ensure that the outcomes are aligned with farmers wants/needs/tastes, and so farmers are familiar with the new varieties before they are mainstreamed. Acceptance of new varieties, and any changes is traits will be critical, as resistant varieties is a key intervention for climate adaptation in southern Africa, as they will allow farmers to remain productive for longer under challenging conditions, and while different crops altogether are investigated.

Technical Application

To effectively leverage resistant varieties, the following should be carried out:

  • Step 1: Survey farmers and meet with other local and national level extension officers to determine key interventions required – drought tolerance, prevalence of certain pests, etc.
  • Step 2: Research and meet other local extension officers to discuss best methods applied to the agricultural practice of resistant varieties in the region.
  • Step 3: Talk to the agricultural dealers and seed manufacturers about the varieties being offered and their characteristics.
  • Step 4: Talk to the agricultural research departments about best opportunities under climatic change in your specific area.
  • Step 5: Either independently or in partnership with seed manufacturers, establish test plots of viable resistant varieties in key locations to act as demonstration plots for farmers to visit, observe growth and harvest, and test the outcomes. Many conditions may come into play when attempting to mainstream resistant varieties, including visual aspects, harvesting and processing differences, palatability and taste, etc. All of these issues must be discussed with farmers during testing and roll-out to ensure resources are not wasted with varieties that will fail.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Reduced incidence of pests and disease results in higher yields.
Increase Resilience
Healthier and more pest resilient farm and landscape. Prediction of pest outbreaks enables earlier management decisions.
Mitigate Greenhouse Gas Emissions
Reduced losses result in lowering GHG emissions per tonne produced
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_57_ResistantVarieties_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • The practice is widely used to increase yield production, produce pest and disease resistant varieties and improve environmental tolerance.
  • Further combines the best traits of the parental forms resulting in some strengths and weaknesses, resulting in a variation of crops species.

Drawbacks

  • May require investment and/or access to credit, as new seeds will not be in farmer seed banks/stores and may be expensive to kick-start implementation.
  • May take time to launch new varieties and gain acceptance from farmers/consumers/markets.

Continuous Long Term Proactive Practices

Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Cultural pest control practices Are pest control management measures to control pests (insects, diseases, weeds) by manipulation of the environment or implementation of preventive practices including using plants that are resistant to pests, raising the mowing height of pastures to shade out weeds, aerating pastures to reduce compaction and plant stress. Several beneficial cultural practices can meet both demands, helping with pest and disease control and minimizing the use of toxic chemicals. In the insect pest management context, cultural practices may be considered as specific crop production practices that may be implemented either in the initial stages of the organic farm plan but also as a continuous plan to reduce the likelihood of insect pest infestation to a crop and damage. They form part of the Integrated Pest management (IPM) Practices and are based on tactics to disrupt pest infestation of crops by having the crop unavailable to pests in space and time, making the crop unacceptable to pests by interfering with host preference or location, reducing pest survival on the crop by enhancing natural enemies, altering the crop’s susceptibility to pests. The tactics or methods used in IPM include one or a combination of the following: Cultural control (crop rotation, use of locally adapted or pest resistant/tolerant varieties, sanitation, manipulating planting/harvest dates to avoid pests). Cultural pest control or IPM results in reduced pests/diseases and increased yields and is a climate-smart practice as its emphasis of prevention helps to control pests and diseases before they occur;  its continuous long-term practices without use of chemicals encourage healthier and more pest resilient crops and landscapes, encouraging the use of beneficial insects  making it an adaptation benefit. The possibility of prediction and recognition of pest outbreaks enables earlier management consultations and decisions. The reduction in losses results in lower GHG emissions per tonne produced.

Technical Application

To effectively implement continuous long-term use of cultural practices, the following steps, as part of the Integrated Pest Management (IPM)  should be carried out, but before taking any pest control action, IPM first sets an action threshold, a point at which pest populations or environmental conditions indicate that pest control action must be taken:

  • Step 1: Inspection. The cornerstone of an effective IPM program is a schedule of regular inspections. This should be regular to identify any new visitors to your crop.
  • Step 2: Preventive Action: regular inspections reveal vulnerabilities in your pest management program, steps can be taken to address them before they cause a real problem. One of the most effective prevention measures is exclusion, i.e., performing structural maintenance e.g by closing potential entry points revealed during inspection thereby physically keeping pests out and hence reducing the need for chemical control.
  • Step 3: Identification: Different pests have different behaviours. By identifying the problematic species, pests can be eliminated more efficiently and with the least risk of harm to other organisms. Professional pest management always starts with the correct identification of the pest in question.
  • Step 4: Analysis: Once you have properly identified the pest, you need to figure out why the pest is in your facility, e.g. food debris or moisture accumulation that may be attracting it? What about odors, through floors or cracks, etc.
  • Step 5: Treatment Selection: Cultural or IPM stresses the use of non-chemical control methods, such as exclusion or trapping, before chemical options. When other control methods have failed or are inappropriate for the situation, chemicals may be used in least volatile formulations in targeted areas to treat the specific pests- use the right treatments in the right places, and only as much as you need to get the job done.
  • Step 6: Monitoring: Constantly monitoring your facility for pest activity and facility and operational changes can protect against infestation and help eliminate existing ones. Your agricultural extension officer can assist you in technical advice to keep pests away.
  • Step 7: Documentation: Up-to-date pest control documentation is important and could include scope of service, pest activity reports, service reports, corrective action reports, trap layout maps, lists of approved pesticides, pesticide usage reports and applicator licenses
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Reduced incidence of pests and disease results in higher yields.
Increase Resilience
Healthier and more pest resilient farm and landscape. Prediction of pest outbreaks enables earlier management decisions.
Mitigate Greenhouse Gas Emissions
Reduced losses result in lowering GHG emissions per tonne produced.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_56_ContiniousLongTermProactivePractices_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • This practice increases yield production, improves soil erosion, enhances soil quality and biological diversity.
  • Reduces pollution of soil, water, allows for pollinating insects to thrive, encourages microbe activity in soil formation

Assists with mitigation of GHG emissions.

Drawbacks

  • Consistent management of pest monitoring, pest prevention and agro-ecosystem management.

Fodder

Value Chain
Soils
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Fodder is the agricultural term for animal feed. Fodder trees and shrubs play an important role in bridging the gap between livestock feed requirements and the low quality and quantity of feeds available to many farmers. As well as providing feed or acting as a feed supplement for livestock, fodder trees and shrubs supply other benefits, such as firewood and erosion control. Fodder trees are either grown in-situ, from seed, and others are planted in nurseries and then transplanted to the field at the beginning of the rainy season. The transplanting method can be more successful than the direct planting - as high as 34 % better, but with a 24 % increase in cost per plant. Benefits of using fodder trees and shrubs as a dietary supplement include improved growth, health and reproductive capacity, and increased milk and meat production, mostly through increased protean uptake. Fodder trees and shrubs can be planted as living fences, field boundaries and in tree/shrub plantations. Popular species include African acacias, and Atriplex nummularia, Cassia petersiana, C. mopane, D. cineria, F. albida, Julbernadia paniculata, P. reclinata, Piliostigma thonningii, Swartizia madagascariensis and Trema orientalis.

Farmers of all categories can use this climate smart sustainable approach to produce both livestock and field crops to obtain improve benefits, improving nutrition for livestock animals, improving soil health, reducing cost of livestock feeding, and as a result increasing income

Technical Application

To effectively carry out fodder tree-shrub production using a nursery environment – a covered or exposed separate planting area, often close to the farm so saplings can be tended easily - consider the following steps:

  • Step 1: Identify one or more suitable species for fodder production, looking at suitable climatic, soil requirements, nutritional value and palatability, also considering source-plant (for cuttings) or seed availability.
  • Step 2: Take cuttings of up to *1 metre in length from mature trees, cutting at an angle. Cutting should be planted within three days, and if transported, cutting end should be covered in wax or petroleum jelly.
  • Step 3: Cuttings should be planted in 10 to 15 cm of soil either directly where they will grow or shallower in polythene planting cups.
  • Step 4: Fodder crops should be planted as the rainy starts, providing sufficient water and mobilising enough nutrients to assist rapid growth.
  • Step 5: Harvesting is again species specific*, and it is important to determine if drying prior to feeding, affects palatability or nutritional value.
  • Step 6: Harvesting frequency should also be determined independently*as plants mature to ensure sustainable production that does not stunt long-term growth and productivity.
  • Step 7: The farmer should consider how much fodder needs to be consumed immediately, how much dried as hay, and how much chopped and compressed to make silage.

Length of cutting, period prior to transplantation, and harvest quantities vary from species to species. Seek guidance from an agroforestry specialist or farmers that have experience with the process when selecting species, and how specifically to plant, manage and harvest fodder crops. An important element to understand is the volume of tree or shrub-based fodder each animal will require.

Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Higher meat and/or diary production per unit area of land.
Increase Resilience
Diversification of diet can mitigate the effects of drought on availability of fodder in pasture/ rangeland. Co-benefits in improving soil fertility and reducing erosion.
Mitigate Greenhouse Gas Emissions
Woody shrubs and trees lock carbon.
Additional Information
  • Franzel, S., Carsan, S. Lukuyu, B, Sinja, J. Wambugu, C. 2014. Fodder trees for improving livestock productivity and smallholder livelihoods in Africa. Current Opinion in Environmental Sustainability. 6
  • World Agroforestry Centre, 2019. Fodder.
  • Smith, O.B. 1994. Feeding fodder from trees and shrubs: Better Farming Series No. 42. Food and Agriculture organisation of the United Nations. Rome, Italy.
  • Karanja G.M. and C.M. Wambugu 2004. Fodder Trees for More Milk and Cash. Ministry of Agriculture (Kenya)/Kenyan Agricultural Research Institute, Nairobi, Kenya.
  • Chakeredza, S., Hove, L., Akinnifesi, K.K., Franzel, S., Ajayim, O.C., and Sileshi, G., 2007.Managing fodder trees as a solution to human–livestock food conflicts and their contribution to income generation for smallholder farmers in southern Africa. Natural Resources Forum 31 286–296
  • Steven Franzel, S., Carsan, S., Lukuyu, B., Sinja, J. and Wambugu, C.2012. Fodder trees for improving livestock productivity and smallholder livelihoods in Africa. Current Opinion in Environmental Sustainability, 6.
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_44_FodderShrubsTrees_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Fodder trees and shrubs can be highly beneficial sources of feed and nutrition for livestock, augmenting, or completely replacing traditional grazing.
  • Can be utilised when over-grazing has occurred, to allow range land to regenerate.
  • Fodder trees and shrubs add vital nutrients to the soil.
  • Fodder trees and shrubs can provide other benefits, including acting as living fences, and wind-breaks, as well as supplying firewood.
  • Crop rotation is important and fodder crops often act as nitrogen fixers (legumes) as well.
  • Fodder crops can also act as cover crops protecting and maintaining soil quality.

Drawbacks

  • Growing fodder can be laborious.
  • The number of fodder trees and shrubs may be extensive, therefore sufficient land is required.
  • Not only does the gathering of fodder require additional labour, but the harvested crop also requires management.

Physical Storage Options

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Grains are stored to reduce the opportunities for loss, damage or infestation by pests. On the farm grain storage can be short-term (>3 months) before it is moved to the supply chain, long term (3-12 months) while farmers store it for home consumption, to sell when prices are more favourable or for planting in the next season. During this phase of post-harvest processing, grains can be stored in bags, silos or other bulk storage containers. Bag storage utilises permeable sacks that will allow air movement in and out of the bag. Structures can be built to store grains and solid-wall bins or silos should be used in areas where grains can be dried properly. Other options include airtight underground pits, steel bins, while concrete silos and warehouses can also be used as storage options. While storing grains to ensure favourable storage, facilities should be kept clean, covered, and never exposed to the elements.  However, pest control measures need to be established, such as adhering to acceptable grain moisture content levels at storage to deter insect infestation, as pests (rodents, insects, etc.) can devastate grains in storage. Physical storage options are built to meet the demand and supply of grains season-to-season and to make seeds available for the next planting season.

Technical Application

To effectively implement Physical Storage Options:

  • Step 1: When making a choice of which storage option to choose, farmers must consider the type of crop to be stored, storage requirements of the crop and the form in which the crop must be stored (for 0-6months/3-12months).
  • Step 2: Grains must be stored in a dry place with a constant temperature.
  • Step 3: Crops should be dried and have low moisture content prior to storage.
  • Step 4: Airtight containers should be used to avoid insect infestation.
  • Step 5: Based on farmer resources and time of storage, there are a number of containers that can be utilised to store harvested crops including metal silos, polythene sacks (that can be layered), mud silos, plastic bags.
  • Step 6: As a last measure, insecticides in the form of a powder can be applied to harvested crops. The powder comes in pre-measured packets and are low dosage so generally safe to handle. Information is provided on each packet and should be read before integrating it into the crop. Grain needs to be cleaned before consumption.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Reduces losses during storage.
Increase Resilience
Storage that is protected from flooding, extreme rain and heat will protect grain. Potential to store until prices are higher and increase income.
Mitigate Greenhouse Gas Emissions
More efficient use of resources.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_39_PhyscialStorageOptions_0.3_2019-07-18_0.pdf
Benefits and Drawbacks

Benefits

  • Storage options can support food security and assist farmers respond to supply and demand, leveraging favourable market prices and conditions.
  • Suitable for short- and long-term storage.

Drawbacks

  • Uncontrolled grain moisture may lead to insect infestation and loss in grain.
  • Insect fumigation may contaminate grains.

Drying Techniques

Value Chain
Annual Average Rainfall
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Drying techniques are agricultural practices applied to assist with the balance of moisture in grains post-harvest, determined by a combination of ambient temperature and relative humidity. Spoiling due to insufficiently dried grain is one of the main causes of grain deterioration, loss in grain quality, and thus market value. Grains have the capability to absorb or evaporate moisture, and a balance of moisture content in the air and grains should be sought to achieve an Equilibrium Moisture Content (EMC). EMC prevents the formation of moulds that may affect the quality of grains, spread of pests and germination of grain seeds. After harvest, transportation and threshing, grain needs to be further dried to be preserved. Natural drying techniques are based on ambient air circulation to reduce the moisture content of the grain before storage. Artificial drying techniques apply fans and/or heating elements to move air and maintain constant temperatures .Natural drying (sun drying) is the preferred, commonly used agricultural technique in southern Africa and does not require use of machinery. Drying techniques preserve the contents of seeds thus assuring sustainable agricultural productivity and the practice as climate smart.

Technical Application

To effectively implement Drying Technique practices:

  • Step 1: Harvest crops.
  • Step 2: Consider the number of different crops that need to be dried.
  • Step 3: Dry the crops naturally using air temperature or direct sunlight or artificial drying through using fans or other mechanical means.
  • Step 4: Never place crops directly on the soil but rather on a cement area, woven mats or a layer of sacks.
  • Step 4: Livestock should be kept away from drying grains to prevent contamination and loss.
  • Step 5: Farmers should consult storage life charts that will help determine dry crop characteristics and approximate times for drying.
  • Step 6: Cover all drying grain at night to prevent loss or damage.
  • Step 7: Sorghum should be left on the seed, maize should be de-husked and left on the cob, grain and pulses are normally left in their pods.
  • Step 8: Monitor the stored grain by checking at least every two weeks.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Reduces potential losses of ripened grain.
Increase Resilience
More grain of a higher quality to consume and sell.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_38_DryingTechniques_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Prevents loss in grain quality.
  • Outside on a flat surface, drying system costs less.
  • The drying crib system can be used for many years.
  • Forced air/hot air dryer systems are not weather dependent.

Drawbacks

  • Imbalanced EMC leads to low quality seed, possible mould/decay and possible germination of grain seeds.
  • The natural drying technique is not suitable for humid climates as EMC is difficult to achieve without artificial drying.

Changing Harvest Time

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Changing harvest time refers to adjusting harvest time to focus on optimal moisture conditions, thereby avoiding losses from mould, decay and possible disease, while also considering optimal maturity of the crop. This approach encourages the reduction in potential losses of ripened grain and increases potential higher quality grain for consumption or market. Harvesting of crops when physiologically mature can minimise losses during transportation to the homestead. Physiological harvesting refers to the time when a grain (fruit, etc.) can be separated from its parent plant and continues to ripen over time. Farmers should consider planting earlier or later or consider planting faster or slower maturing varieties to avoid issues of post-harvest loss. This is a climate smart practice because it reduces potential losses of ripened grain, increase the quality of grain harvested, and is overall a more efficient use of resources, all while mitigating the spread of diseases and reducing GHG emissions.

Technical Application

To effectively implement Changing Harvest Time practices:

  • Step 1: Consider researching recent rainfall records and consult national meteorological services to as accurately predict start of rainy season as possible.
  • Step 2: Farmers should consult data provided by the African Post Harvest Loss Information System (APHLIS), which provides information on harvest loss and additional resources to consult.
  • Step 3: Consult with national agricultural extension and research to determine growing periods of chosen crops. Request information about quicker or slower maturing seeds.
  • Step 4: Plant crops at the right time so as to avoid harvesting during rainy season.
  • Step 5: Harvest as soon as crops are physiologically mature.
  • Step 6: Wait 24 hours after a rain period to harvest if rain is unavoidable. This may take several days, however, harvesting crops after one rain is better than leaving it for an entire rainy season.
  • Step 7: Crops should be transported to the storage for immediate drying.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Reduces potential losses of ripened grain.
Increase Resilience
More grain of a higher quality to consume and sell.
Mitigate Greenhouse Gas Emissions
More efficient use of resources.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_37_ChangingHarvestTime_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Reduces the potential loss of ripened grain and increases potential higher quality grain for consumption or market.
  • It improves crop production, food security and farm income.

Drawbacks

  • Moisture from rainfall at harvest time can risk crop degradation post-harvest, due to mould, decay and disease.
  • Different crops have different growing seasons, and this should be known and monitored constantly, specifically as climate change has been shown to alter growing seasons, which will in turn impact harvesting times.

Best Practice Harvesting Techniques

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Best Practice Harvesting Techniques are formalised harvesting practices intended to reduce breakage and bruising of crops during collection and storage. These techniques minimise harvest losses and maintain the quality of the produce. To maximise this approach, factors such as moisture content, cleanness of the grain, colour, odour and potential pest infestation need to be considered during harvest periods. Considering each of these factors will increase grain value as quality standards are directly related to grain price. Harvesting can be performed manually or mechanically, with obvious cost implication of employing the latter.

Technical Application

To effectively implement Best Practice Harvesting Techniques:

  • Step 1: Obtain equipment and supplies needed for the harvest and post-harvest activities, e.g. clean sacks, drying mats, etc.
  • Step 2: Allocate drying and threshing areas, ensuring the areas are swept, dry, and there is no/limited access for livestock or rodents. If in a dry climate or season, drying outside is optimal. If necessary, construct drying cribs elevated from the ground with rodent guards on legs can reduce access for rodents.
  • Step 3: Allocate sufficient storage space for the harvested crop.
  • Step 4: Clear weeds from the farm to prevent weed seeds from contaminating the harvest.
  • Step 5: Place the harvested crop directly onto clean mats and bags to avoid contact with the soil, which may lead to moisture uptake and also prevent contamination with tiny Striga.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Reduces potential losses of ripened grain.
Increase Resilience
More grain of a higher quality to consume and sell.
Mitigate Greenhouse Gas Emissions
More efficient use of resources.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_36_BestPracticeHarvestingTech_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Best practice harvesting techniques improve grain quality and minimise post-harvest loses.

Drawbacks

  • Lodging can cause significant losses as well as contamination.

Farmer Managed Natural Regeneration

Value Chain
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Farmer Managed Natural Regeneration (FMNR) is a technique of restoring degraded land and monitoring restoration of the land involving the systematic regeneration and management of trees and shrubs from tree stumps, roots and seed. Degraded arid land often features left over indigenous plants, which if maintained and promoted to grow can improve pasture and crop lands while simultaneously encouraging re-growth of seeds, roots and shrubs. Key to this practice is the existence of living stumps, tree roots and seed that, if encouraged, will regrow. The land is protected from being completely cleared or further grazed and this allows trees to grow without disturbance. Once the stumps and trees start to grow, pruning and trimming of trees is required to allow space between trees and promote healthy long tree trunks. Once the trees have matured, intercropping can take place or livestock can be re-introduced to graze.

While requiring some investment in terms of effort, FMNR has climate smart advantages such as controlling rainfall/irrigation run-off, supporting water quality improvements, providing sources of timber or fodder, supporting habitant regeneration for pollinator insect species, acting as sun shade, and reducing soil erosion.

Technical Application

To effectively implement Farmer Managed Natural Regeneration:

  • Step 1: Degraded land needs to be identified and living stumps, roots and seeds need to be encouraged to regrow. This may include periodic watering. Focus should be on indigenous species, and present tree species (existing stumps).
  • Step 2: Consider leaving the field un-grazed to promote tree growth.
  • Step 3: Select tree stumps and the tallest and straightest stems to grow into trees.
  • Step 4: Prune and manage by removing stems and unwanted side branches.
  • Step 5: Maintain the process by occasionally pruning side branches.
  • Step 6: Manage the land consistently to avoid overgrazing, which can lead to further degradation.
  • Step 7: Consider rotational grazing to allow seeds, stumps and underground shrubs to re-grow. This will reduce the cost of replanting. Shrubs and growing trees and saplings need to be protected before introducing livestock. Shrubs and growing trees and saplings need to be protected before introducing livestock.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Increase availability of biomass, which improves soil fertility and thus production. The trees/shrubs can be a source of income and reduce costs.
Increase Resilience
Reduces erosion of soil and evaporation. Increases water retention and infiltration. Diversifies income sources. Improves yield stability.
Mitigate Greenhouse Gas Emissions
Locks more carbon in plants and in soil.
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_35_FarmerManagedNaturalRegeneration_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • FMNR improves soil quality and reduces soil erosion.
  • Improved dry-season pasture.
  • Agricultural management practices such as pruning, and trimming are carried out appropriately in turn improving growth and air circulation.
  • Higher livestock productivity.
  • Provides protection from wind and shade for livestock, when introduced.
  • Increased availability of firewood, thatch and other non-timber forest-products/materials.

Drawbacks

  • The land needs to be managed consistently to avoid overgrazing.

Agroforestry: Silvo-Pasture

Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Agroforestry is a land management practice that combines the planting and management of trees and shrubs with crops and pasture, providing benefits of soil health, crop yields, resilience to climate change, biodiversity and economic opportunities. Agroforestry encompasses numerous practices, including silvo-pasture, agro-silvo cultural, and agro-silvo-pastural. One such successful agroforestry practice is silvo-pasture – the planting of trees and shrubs within livestock grazing pasture lands. Not to be confused with agrosilvopasture (combination of crops, shrubs/trees and livestock, silvopasture is the combination of trees and shrubs with pastural grazing land. The trees can be regularly or irregularly placed, and in addition to improving soil conditions in pasture lands, also provide production of protein-rich tree fodder for on farm feeding and for cut-and-carry fodder production. If growing larger species of tree, coppicing can also produce timber for building materials and firewood.

Technical Application

To effectively implement hedge planting:

  • Step 1: Purchase saplings of selected tree species from a local nursery or grow saplings in separate on-farm nursery. If growing on-farm, saplings should be held-up with an upright support bamboo/wooden pole. Ideally, the farmer should begin exploring silvopasture tree species beginning with indigenous trees, such as acacias, and other local trees. It is worth considering a mixture of species, as well as mixed shallower and deeper rooted trees.
  • Step 2: Once at a meter or over in height, transplant to pastures, surrounding each individual sapling with a wire mesh cage-tube or insert into five-centimetre diameter PVC pipe to protect from browsers. Plant at least ten to twenty meters apart, in either a random or uniform pattern. This is a matter of preference.
  • Step 3: Once saplings are planted, only allow grazing livestock (cows, sheep, ducks, geese, chickens) in the silvopasture, avoiding browsers (goats, etc), which will strip, damage or destroy the saplings.
  • Step 4: Once mature and above browsing height, two plus meters, remove protective cage or pipe.
  • Step 5: Depending on species, pruning, coppicing etc should be performed every two months to ensure that trees remain healthy and productive, while maximising outputs for in-field and cut and carry fodder.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Diversified agricultural outputs supports sustainable agricultural productivity, providing multiple streams of revenue, reducing labour and cost for land clearance and maintaining healthy pasture land.
Increase Resilience
As climate change alters local grazing land, silvopasture can reduce overgrazing and land degradation. Trees introduced into pasture can create a more positive environment for livestock, including shade in warmer climates, and shelter during rainfall.
Mitigate Greenhouse Gas Emissions
Retaining trees within pasture land and minimising complete conversion of land reduces greenhouse gas emissions and retains carbon in the soil.
Additional Information
  • Balehegn, M., 2017. Silvopasture Using Indigenous Fodder Trees and Shrubs: The Underexploited Synergy Between Climate Change Adaptation and Mitigation in the Livestock Sector. Chapter from book The Need for Transformation: Local Perception of Climate Change, Vulnerability and Adaptation Versus ‘Humanitarian’ Response in Afar Region, Ethiopia (pp.493-510). ResearchGate.
  • Jose, S. & Dollinger, 2019. Silvopasture: a sustainable livestock production system. Chapter in J. Agroforest Syst (2019)
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_34_SilvoPasture_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Presence of trees can be beneficial to livestock in terms of shade and shelter, as well as enhancing carbon storage and enriching biodiversity.
  • Manure from livestock can improve soil health in grazing land.
  • Leaf litter and pruned material also add organic matter to soil, improving productivity and drainage.
  • Presence of trees can contribute to reducing soil erosion.
  • Trees can produce numerous forest products, including timber for firewood and construction.
  • There is an opportunity to diversify income for small-holder farms and increase food security.
  • Tree trimmings and leaf litter can also be used for in-field or cut and carry fodder.

Drawbacks

  • Requires some investment in terms of purchase of seed and/or saplings.
  • May require adjustment for mixed grazing and browsing livestock patterns.
  • If dietary requirements of livestock are not complete, animals may strip bark from trees. This can be avoided by ensuring that pasture stocking is not too high, and best efforts are made to encourage pasture health and supplementing livestock feed with the necessary minerals, energy and protein.

Boundary Planting

Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Boundary planting, also known as live fence planting, is a technique used to protect crops from the interference of people and animals that can disturb plant growth. Trees/shrubs are a good example of this approach as they can form a shield when planted along the boundaries of the garden or surrounding a planted field. The trees/shrubs act as wind break to shield plants against strong winds causing physical damage to plants themselves, or the removal of soil (erosion). Additional benefits include the use of branches for firewood or building materials, and the other parts of trees can be used as fodder, fruit or leave harvested for consumption, or for medicinal use. Tree/shrub spacing is critical, as trees that have dense canopies can conversely cause destructive down-drafts, negating the intended benefits. Boundary planting helps limit global warming by mitigating GHG emissions through reducing harmful gases such as, carbon dioxide, from the atmosphere and releasing oxygen.

Technical Application

To effectively implement Boundary Planting practices:

  • Step 1: Plant long lines of two fast growing trees, Caesalpinia velutina trees, between a Bombacopsis quinate and a Swietenia humilis to be replaced over time.
  • Step 2: Consider planting the boundary trees 1.5 metres apart along pre-existing fences.
  • Step 3: Attach metal fencing to the trees to support the large trees without endangering their growth. Harvest fodder when the tree is overgrown.
  • Step 4: Prune lower brunches to encourage upward growth of trees and reduce shed on the plants.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Increases availability of tree shrub products (nuts, fruits, timber etc.) and biomass, which improves soil fertility, and thus production.
Increase Resilience
Reduces erosion of soil and evaporation. Increases water retention and infiltration. Diversifies income sources. Improves yield stability.
Mitigate Greenhouse Gas Emissions
Locks more carbon in plants and in the soil.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_33_BoundaryPlanting_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Live fence planting is cost effective, conserves soil moisture, acts a windbreak and reduces soil erosion. These trees have various benefits such as medicinal use, mulch, livestock feeds, fruits, bee forage, timber and firewood.
  • Maintenance of boundary trees is low with short, medium and long ecological and economic benefits.

Drawbacks

  • Boundary planting occupies more land than a single row.
Subscribe to Other

Funding Partners

4.61M

Beneficiaries Reached

97000

Farmers Trained

3720

Number of Value Chain Actors Accessing CSA

41300

Lead Farmers Supported