Skip to main content

Best Practice Harvesting Techniques

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Best Practice Harvesting Techniques are formalised harvesting practices intended to reduce breakage and bruising of crops during collection and storage. These techniques minimise harvest losses and maintain the quality of the produce. To maximise this approach, factors such as moisture content, cleanness of the grain, colour, odour and potential pest infestation need to be considered during harvest periods. Considering each of these factors will increase grain value as quality standards are directly related to grain price. Harvesting can be performed manually or mechanically, with obvious cost implication of employing the latter.

Technical Application

To effectively implement Best Practice Harvesting Techniques:

  • Step 1: Obtain equipment and supplies needed for the harvest and post-harvest activities, e.g. clean sacks, drying mats, etc.
  • Step 2: Allocate drying and threshing areas, ensuring the areas are swept, dry, and there is no/limited access for livestock or rodents. If in a dry climate or season, drying outside is optimal. If necessary, construct drying cribs elevated from the ground with rodent guards on legs can reduce access for rodents.
  • Step 3: Allocate sufficient storage space for the harvested crop.
  • Step 4: Clear weeds from the farm to prevent weed seeds from contaminating the harvest.
  • Step 5: Place the harvested crop directly onto clean mats and bags to avoid contact with the soil, which may lead to moisture uptake and also prevent contamination with tiny Striga.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Reduces potential losses of ripened grain.
Increase Resilience
More grain of a higher quality to consume and sell.
Mitigate Greenhouse Gas Emissions
More efficient use of resources.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_36_BestPracticeHarvestingTech_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Best practice harvesting techniques improve grain quality and minimise post-harvest loses.

Drawbacks

  • Lodging can cause significant losses as well as contamination.

Farmer Managed Natural Regeneration

Value Chain
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Farmer Managed Natural Regeneration (FMNR) is a technique of restoring degraded land and monitoring restoration of the land involving the systematic regeneration and management of trees and shrubs from tree stumps, roots and seed. Degraded arid land often features left over indigenous plants, which if maintained and promoted to grow can improve pasture and crop lands while simultaneously encouraging re-growth of seeds, roots and shrubs. Key to this practice is the existence of living stumps, tree roots and seed that, if encouraged, will regrow. The land is protected from being completely cleared or further grazed and this allows trees to grow without disturbance. Once the stumps and trees start to grow, pruning and trimming of trees is required to allow space between trees and promote healthy long tree trunks. Once the trees have matured, intercropping can take place or livestock can be re-introduced to graze.

While requiring some investment in terms of effort, FMNR has climate smart advantages such as controlling rainfall/irrigation run-off, supporting water quality improvements, providing sources of timber or fodder, supporting habitant regeneration for pollinator insect species, acting as sun shade, and reducing soil erosion.

Technical Application

To effectively implement Farmer Managed Natural Regeneration:

  • Step 1: Degraded land needs to be identified and living stumps, roots and seeds need to be encouraged to regrow. This may include periodic watering. Focus should be on indigenous species, and present tree species (existing stumps).
  • Step 2: Consider leaving the field un-grazed to promote tree growth.
  • Step 3: Select tree stumps and the tallest and straightest stems to grow into trees.
  • Step 4: Prune and manage by removing stems and unwanted side branches.
  • Step 5: Maintain the process by occasionally pruning side branches.
  • Step 6: Manage the land consistently to avoid overgrazing, which can lead to further degradation.
  • Step 7: Consider rotational grazing to allow seeds, stumps and underground shrubs to re-grow. This will reduce the cost of replanting. Shrubs and growing trees and saplings need to be protected before introducing livestock. Shrubs and growing trees and saplings need to be protected before introducing livestock.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Increase availability of biomass, which improves soil fertility and thus production. The trees/shrubs can be a source of income and reduce costs.
Increase Resilience
Reduces erosion of soil and evaporation. Increases water retention and infiltration. Diversifies income sources. Improves yield stability.
Mitigate Greenhouse Gas Emissions
Locks more carbon in plants and in soil.
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_35_FarmerManagedNaturalRegeneration_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • FMNR improves soil quality and reduces soil erosion.
  • Improved dry-season pasture.
  • Agricultural management practices such as pruning, and trimming are carried out appropriately in turn improving growth and air circulation.
  • Higher livestock productivity.
  • Provides protection from wind and shade for livestock, when introduced.
  • Increased availability of firewood, thatch and other non-timber forest-products/materials.

Drawbacks

  • The land needs to be managed consistently to avoid overgrazing.

Agroforestry: Silvo-Pasture

Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Agroforestry is a land management practice that combines the planting and management of trees and shrubs with crops and pasture, providing benefits of soil health, crop yields, resilience to climate change, biodiversity and economic opportunities. Agroforestry encompasses numerous practices, including silvo-pasture, agro-silvo cultural, and agro-silvo-pastural. One such successful agroforestry practice is silvo-pasture – the planting of trees and shrubs within livestock grazing pasture lands. Not to be confused with agrosilvopasture (combination of crops, shrubs/trees and livestock, silvopasture is the combination of trees and shrubs with pastural grazing land. The trees can be regularly or irregularly placed, and in addition to improving soil conditions in pasture lands, also provide production of protein-rich tree fodder for on farm feeding and for cut-and-carry fodder production. If growing larger species of tree, coppicing can also produce timber for building materials and firewood.

Technical Application

To effectively implement hedge planting:

  • Step 1: Purchase saplings of selected tree species from a local nursery or grow saplings in separate on-farm nursery. If growing on-farm, saplings should be held-up with an upright support bamboo/wooden pole. Ideally, the farmer should begin exploring silvopasture tree species beginning with indigenous trees, such as acacias, and other local trees. It is worth considering a mixture of species, as well as mixed shallower and deeper rooted trees.
  • Step 2: Once at a meter or over in height, transplant to pastures, surrounding each individual sapling with a wire mesh cage-tube or insert into five-centimetre diameter PVC pipe to protect from browsers. Plant at least ten to twenty meters apart, in either a random or uniform pattern. This is a matter of preference.
  • Step 3: Once saplings are planted, only allow grazing livestock (cows, sheep, ducks, geese, chickens) in the silvopasture, avoiding browsers (goats, etc), which will strip, damage or destroy the saplings.
  • Step 4: Once mature and above browsing height, two plus meters, remove protective cage or pipe.
  • Step 5: Depending on species, pruning, coppicing etc should be performed every two months to ensure that trees remain healthy and productive, while maximising outputs for in-field and cut and carry fodder.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Diversified agricultural outputs supports sustainable agricultural productivity, providing multiple streams of revenue, reducing labour and cost for land clearance and maintaining healthy pasture land.
Increase Resilience
As climate change alters local grazing land, silvopasture can reduce overgrazing and land degradation. Trees introduced into pasture can create a more positive environment for livestock, including shade in warmer climates, and shelter during rainfall.
Mitigate Greenhouse Gas Emissions
Retaining trees within pasture land and minimising complete conversion of land reduces greenhouse gas emissions and retains carbon in the soil.
Additional Information
  • Balehegn, M., 2017. Silvopasture Using Indigenous Fodder Trees and Shrubs: The Underexploited Synergy Between Climate Change Adaptation and Mitigation in the Livestock Sector. Chapter from book The Need for Transformation: Local Perception of Climate Change, Vulnerability and Adaptation Versus ‘Humanitarian’ Response in Afar Region, Ethiopia (pp.493-510). ResearchGate.
  • Jose, S. & Dollinger, 2019. Silvopasture: a sustainable livestock production system. Chapter in J. Agroforest Syst (2019)
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_34_SilvoPasture_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Presence of trees can be beneficial to livestock in terms of shade and shelter, as well as enhancing carbon storage and enriching biodiversity.
  • Manure from livestock can improve soil health in grazing land.
  • Leaf litter and pruned material also add organic matter to soil, improving productivity and drainage.
  • Presence of trees can contribute to reducing soil erosion.
  • Trees can produce numerous forest products, including timber for firewood and construction.
  • There is an opportunity to diversify income for small-holder farms and increase food security.
  • Tree trimmings and leaf litter can also be used for in-field or cut and carry fodder.

Drawbacks

  • Requires some investment in terms of purchase of seed and/or saplings.
  • May require adjustment for mixed grazing and browsing livestock patterns.
  • If dietary requirements of livestock are not complete, animals may strip bark from trees. This can be avoided by ensuring that pasture stocking is not too high, and best efforts are made to encourage pasture health and supplementing livestock feed with the necessary minerals, energy and protein.

Boundary Planting

Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Boundary planting, also known as live fence planting, is a technique used to protect crops from the interference of people and animals that can disturb plant growth. Trees/shrubs are a good example of this approach as they can form a shield when planted along the boundaries of the garden or surrounding a planted field. The trees/shrubs act as wind break to shield plants against strong winds causing physical damage to plants themselves, or the removal of soil (erosion). Additional benefits include the use of branches for firewood or building materials, and the other parts of trees can be used as fodder, fruit or leave harvested for consumption, or for medicinal use. Tree/shrub spacing is critical, as trees that have dense canopies can conversely cause destructive down-drafts, negating the intended benefits. Boundary planting helps limit global warming by mitigating GHG emissions through reducing harmful gases such as, carbon dioxide, from the atmosphere and releasing oxygen.

Technical Application

To effectively implement Boundary Planting practices:

  • Step 1: Plant long lines of two fast growing trees, Caesalpinia velutina trees, between a Bombacopsis quinate and a Swietenia humilis to be replaced over time.
  • Step 2: Consider planting the boundary trees 1.5 metres apart along pre-existing fences.
  • Step 3: Attach metal fencing to the trees to support the large trees without endangering their growth. Harvest fodder when the tree is overgrown.
  • Step 4: Prune lower brunches to encourage upward growth of trees and reduce shed on the plants.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Increases availability of tree shrub products (nuts, fruits, timber etc.) and biomass, which improves soil fertility, and thus production.
Increase Resilience
Reduces erosion of soil and evaporation. Increases water retention and infiltration. Diversifies income sources. Improves yield stability.
Mitigate Greenhouse Gas Emissions
Locks more carbon in plants and in the soil.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_33_BoundaryPlanting_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Live fence planting is cost effective, conserves soil moisture, acts a windbreak and reduces soil erosion. These trees have various benefits such as medicinal use, mulch, livestock feeds, fruits, bee forage, timber and firewood.
  • Maintenance of boundary trees is low with short, medium and long ecological and economic benefits.

Drawbacks

  • Boundary planting occupies more land than a single row.

Rainwater Harvesting

Annual Average Rainfall
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Rainwater harvesting is an agricultural technique of collecting and storing rainwater or runoff in tanks or natural reservoirs. This practice is mostly practiced in arid or semi-arid areas with temporal and spatial variability of rainfall mostly lost as surface runoff or evaporation. Runoff is harvested and utilised as a preventative measure for soil erosion, as well as a water management strategy for irrigating crops and for livestock water. This technique enables farmers to capture and store rainwater during times of plenty for use during times of scarcity. Rainwater harvesting is a technology that maximises the use of existing freshwater resources and is a useful technology for water resource planners and managers in both governmental and non-governmental organisations, institutions and communities.

Technical Application

To effectively implement Rainwater Harvesting practices:

  • Step 1: Create a water collection zone connected to a gutter system.
  • Step 2: Install filters to the water collection zone.
  • Step 3: Connect a hose pipe for easy distribution of irrigation water.
  • Step 4: If a farmer intends to use water for human consumption other than flushing toilets, etc, water quality must be frequently tested using reliable and low-cost/low-tech solutions.
  • Step 5: Use of filters can be considered to reduce particulate and other pollutants but should be thoroughly investigated – as a separate subject – by the extension officer and the farmer, otherwise it could lead to illness. It is recommended that farms utilise harvested rainwater for irrigation and other farming activities only.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
More water available to plants when it is needed.
Increase Resilience
Mitigate dry spells.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_30_RainwaterHarvesting_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Rainwater harvesting acts as a source of water at a point where it is needed, usually stored in a tank.
  • Works as an alternative water source in cases of drought or irrigation system breakdown.
  • Rooftop rainwater catchment construction is simple.
  • Success in rainwater harvesting depends on frequency and amount of rainfall.

Drawbacks

  • Asphalt, tar and wood roofs may contaminate the water making it unsafe for direct human consumption.
  • For potable water collection, lead containing gutters should not be used.
  • Harvested water may be contaminated by animal waste.

Saving Seeds

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

The process of saving one’s own seed involves the collection of seeds from the best performing (most yield, largest size, early maturing or other desired traits, etc.) plants from one season to plant them in the next cropping season. The aim of this practice is to select seed from parent plants in the hope that desired characteristics are replicated in the next generation of plants. Seeds that have been selected will likely be adapted to local farming conditions including soil types and rainfall amounts. The seed most likely to carry intergenerational traits (size, colour, water use efficiency, and other biophysical traits) are open-pollinated (those plants pollinated by birds, insects, wind, etc.) seed varieties as they are cross-pollinated by the same type of crop. Different crops have different reproduction cycles with some species flowering or producing seeds annually, biennially or on a perennial basis. Thus, understanding seeding time is important for farmers aiming to save their own seeds. Almost as important as selecting the correct seeds is seed storage, which must be done correctly to avoid spoiling and losses. Seed saving is a cost-effective measure for farmers to employ and helps them avoid having to buy seeds at market on an annual basis. Seed trading or community seed banks provide a climate resilience strategy as they secure farmers access and availability of diverse, locally adapted crops and varieties while enhancing indigenous knowledge. Often crops from hybrid seeds or improved varieties do not generate viable seeds ensuring that seeds cannot be saved and must be purchased on an annual basis.

Technical Application

To effectively undertake seed saving:

  • Step 1: Communicate with national agricultural extension and local farmers regarding seed harvesting timing and practices for local crop species.
  • Step 2: Clear field and sow desired crop using climate smart agriculture practices.
  • Step 3: Monitor plant life cycle and ensure that seeds are extracted correctly and are not spoiled in the process. Employ local expertise to ensure seed harvesting is carried out correctly.
  • Step 4: Post-harvest, seeds should be adequately dried and then transferred to proper storage facilities.
  • Step 5: store seeds in dry, cool, and dark locations. This will prevent them from spoil. Different strategies for seed storage are implemented around the region so local expertise should be sought.
  • Step 6: Ensure that pests are excluded from storage areas to prevent loss or spoil (Technical Brief 61-65).
  • Step 7: Community seed banks or seed trading should be established to allow farmers to integrate different varieties into their farming system that are resilient to local climatic conditions
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Can reduce losses from pests and diseases.
Increase Resilience
More predictable yields.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_21_SavingSeeds_2019-10-17_0_0.pdf
Benefits and Drawbacks

Benefits

  • Climate resilient method for crop diversification.
  • Many farmers have been using this technique for generations and this should be encouraged.
  • Cost effective method for sustainable crop growth.

Drawbacks

  • Attention must be closely paid to plant lifecycle and seeds should be collected at appropriate time.
  • Storage methods should be employed to manage pests and rot.

Crop Variety Selection

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Selecting crop varieties is a key resilience strategy for farmers facing changing climatic conditions. There are two types of seed varieties: traditional varieties and improved varieties. Traditional varieties have been selected by farmers for their special characteristics and due to many years of selecting the strongest seeds over generations, they are generally adapted to local natural conditions. In some respects, these seeds increase the chance of getting a return on investment in stable environments, but are less likely to mitigate GHG emissions. Traditional crop varieties are usually selected by small scale farmers due to their relatively low cost and availability and can be saved and replanted for further growing seasons. Improved varieties are seeds that have been altered by scientific processes to incorporate desired characteristics using techniques such as following pure line breeding, classical breeding, hybridisation and molecular breeding. Desirable characteristics include higher yields, shorter growing seasons, drought resistance, salt tolerance, etc. Improved varieties are selected when facing adverse conditions such as higher temperatures and/or less predictable rainfall and normally result in the efficient use of water reducing use of energy for irrigation systems. While these seeds offer improvements they are usually commercial products and as a result can be expensive. Furthermore, as they are sold by seed companies availability is driven by demand. Most seed companies protect enhancements using  intellectual property rights that legally limit seed saving and replanting of seeds. In fact, many of these seed varieties have been designed to prevent plants to be reseeded. Thus, seed varieties afford farmers the opportunity to incorporate crops that can be planted to exploit their unique characteristics – traditional or improved, assisting farmers to grow crops that are resilient to changing climates to produce crops that are market-appropriate.

Technical Application

To effectively undertake leverage traditional seed characteristics, or improved crop varieties  the following should be carried out:

  • Step 1: Prior to selecting seed varieties, perform a Cost Benefit Analysis (CBA) to identify how crops will perform and their benefits compared to the costs of the seed, considering the following:
    • Local  farming system(s): land availability per household, crops traditionally grown, access to inputs such as fertilisers,
    • Local environmental conditions: soil conditions, disease, pests, climatic conditions, occurrence of flooding/droughts and other natural disasters.
    • How climate change has impacted or will impact the farming system and how crop variety selection can be a climate- smart practice.
    • Local access to seeds – is seed collected at the householder level, do neighbours exchange seeds, do farmers have access to commercially produced seeds?  Are the costs for accessing commercial, improved seeds manageable or prohibitive? The CBA should weigh the benefits of a new seed against perceived actual or transactional costs for selecting a new seed.
  • Step 2: Obtain information and guidance from local experts, lead farmers, and government regarding best varieties to grow.
  • Step 3: Evaluate results of the CBA and select appropriate seeds that match the farm system/requirements, and available financial resources/access to credit.
  • Step 4: Plant test plots of selected seeds to understand if benefits are realised and demonstrate outcomes with farmers, showing possible alternatives and discuss implementation.
  • Step 5: Following full demonstration and discussion with farmers, implement at farm level – planting the first crop in accordance with guidance provided by seed provider, or traditional knowledge.

Consider in-country seed sources to access different varieties through local extension or research services. When buying seeds ensure that the seeds are adequately dry and look for seed that is certified by a national seed laboratory to ensure that the variety is the highest quality possible. Seeds should be properly stored to avoid high temperatures and humid air to reduce chances of early germination.

Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Selecting improved seed varieties allows the farmer to maintain agricultural productivity as the climate changes.
Increase Resilience
Selection of improved varieties may assist farmers adapt agricultural production to assist adaptation to climate change.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_20_CropVarietySelection_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Exploring crop variety is a key way for farmers to grow more resilient crops within the context of changing climatic conditions. Drought resistant or faster maturing varieties, for example, allow you to respond to reduced rainfall conditions.
  • Improved crop varieties have been altered by scientific processes to incorporate desired characteristics.
  • Understanding local context is important when researching the best crop variety for the area.

Drawbacks

  • Improved crop varieties are commercially sold and can be expensive as they often require additional inputs (inorganic fertilisers etc.)
  • Traditional crops have generally adapted to local climatic and landscape conditions, are widely available and are cost effective for local populations; however, these varieties may not be resilient to climatic changes, and are less likely to mitigate GHG emissions.

Weed Control

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Weeds are any unwanted plant species that compete with crops for sunlight, water, nutrients, air and space, hindering crop growth and in some cases are even toxic to crop plants. Weed control measures can be applied in an integrated manner to help prevent the growth and spread of weeds in agricultural systems. An integrated weed management approach aims to restrict weed growth until a crop is well established and can outcompete weeds. This integrated approach includes biological, chemical, cultural and/or physical tactics to combat weed spread and growth and these practices can be more cost effective than herbicide applications. Integrated weed management is climate smart as it combines multiple climate smart practices that increase farmers resilience, limits GHG releases and increases productivity. Options for weed control include crop rotation, intercropping, cover crops (which can be used as green manure or mulch), mulching, seed-bed preparation, livestock grazing, seed/variety selection, mowing, and hand-weeding.

The application of integrated weed control is climate smart as it reduces herbicide application and reduction in machinery usage (i.e. through no-tillage practices).

Technical Application

To effectively undertake weed control measures:

  • Step 1: Review weed control measures - crop rotation, intercropping, cover crops, mulching, seed-bed preparation, livestock grazing, seed/variety selection, mowing, hand-weeding and adjustments to tillage practices - and determine which methods are available and appropriate for the farming system and farmer. Two or more of these techniques can be applied to assist in ensuring farmers have more chance of success. Understand possible negative impacts of each weed control method.
  • Step 2: Improve weed identification knowledge in specific areas.
  • Step 3: Prevent weeds from spreading – clean clothes, animals, machinery, vehicles to limit weed transport; use only well stored/rotted manure (4-5 months) (Knowledge Product 16), include fencing, irrigation and other farm ‘breaks’ where possible
  • Step 4: Apply a combination of weed control methods including – cover crops (Technical Brief 15), mulching, intercropping (Technical Brief 07), crop rotation (Technical Brief 09), livestock grazing, seed selection (Technical Brief 20), mowing, hand-weeding. Try to avoid the application of herbicides, tillage and burning.
  • Step 5: monitor and document most effective weed management strategies for each farmer, and use lessons learned from the area with other farmers where applicable.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Weed control supports agricultural productivity by removing competition while reducing the need for herbicides.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_19_WeedControl_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Integrated weed management involves employing two or more climate smart practices.
  • Reduced consumption of chemicals
  • Cost effective methods that do not require additional inputs.

Drawbacks

  • More time consuming than applying herbicides or other more destructive methods.
  • Strategy requires careful planning.
  • May not be 100% effective.

Terracing

Value Chain
Annual Average Rainfall
Soils
Topography
Climatic Zone
Water Source
Altitudinal Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Terraces are cross-slope barriers that have been cut into slopes offering surfaces that are flat or slightly sloped. Terraces are designed to minimise erosion and increase the infiltration of runoff water. In addition, terracing allows for a maximum of area for farming and cropping by cutting into slopes, creating steps on a hillside. Riser walls are retained by growing trees or grasses, using stones or compacted soil to manage runoff and ensure stability. Terracing involves significant planning and labour to implement and maintain. Labour should be coordinated and planned to ensure that terracing is not carried out in an ad hoc manner, and labour to maintain the terraces is available annually. Terracing is suited to areas with severe erosion hazards, deep soils, on slopes that do not exceed 25 degrees and are not too stony. Community action is often required, as terracing is a landscape-level solution that can only be implemented if all parties agree and convert slopes together. Implementing individual terraces or terraced sections can negatively impact the entire hillside.

Technical Application

To effectively approach to terracing construction:

  • Step 1: Measure slope angle – should not exceed 25 degrees and soils should be at least 0.5 metres deep.
  • Step 2: Plot the contours – see Technical Brief 16 Contour Planting for instructions for staking-out contours, and the diagram below for use of a t-stick to measure the distance between contours.
  • Step 3: Start at the lowest terrace. Dig a trench vertically below the next contour, and then dig outwards to the lowest contour. Remove soil and place downhill below the lowest contour.
  • Step 4: Compact soil on constructed terrace.
  • Step 5: Work should then progress upslope, emptying top-soil on to the terrace below to provide soil for planting.
  • Step 6: Strengthen riser buttress walls (back-walls) with stones, compacted soil, or by planting grass or trees.
  • Step 7: Terrace-end drainage should also be considered, so water does not pool too heavily. The down-field gutters can be lined with stones to reduce erosion

Detailed diagrams and tables for calculating terrace dimensions are provided in Peace Corps 1986, Soil conservation techniques for hillside farming.

Additional guidance can be sought from videos provided by Access Agriculture: SLM02 Fanya Juu terraces. The Kenyan example provided is also up-slope terrace construction but using a different method where a trench is dug, and the loose topsoil is thrown up-hill (fanya juu in Kiswahili) which forms a ridge that flattens over time.

Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Stable slopes are a critical element of maintaining agricultural productivity.
Increase Resilience
Terraces enhance slope stability and reduce soil erosion in the face of changing climates, with changing temperature and rainfall regimes.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_18_Terracing_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Terracing prevents erosion and can act as a rainfed irrigation system.
  • Terracing is a labourious process to implement and takes significant effort to maintain.

Drawbacks

  • Requires professional advice on implementing terracing.
  • If implemented incorrectly, can have negative impacts including more erosion than without terracing.

Agroforestry: Alley Cropping

Annual Average Rainfall
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Agroforestry is a land management practice that combines the planting and management of trees and shrubs with crops and pasture, providing benefits of soil health, crop yields, resilience to climate change, biodiversity and economic opportunities. Agroforestry encompasses numerous practices, including silvo-pasture, agro-silvo cultural, and agro-silvo-pastural. One successful agro-silvo-cultural practice is alley cropping, where the farmer plants rows of trees, shrubs or hedges between crop rows. Usually hedges comprise leguminous plants intended to fix nitrogen in the soil and provide leaf litter and prunable biomass. The hedges are pruned with the pruned material spread on the ground, to reduce shading and competition with the primary crop. Timing of pruning is important to ensure that the pruned biomass releases nutrients to the soil at a time when the primary crop needs them for maximum crop productivity; e.g. when alley-cropping maize, the pruned biomass needs to breakdown with and release beneficial nutrients into soil from two and eight weeks after planting the maize crop. This approach has proven to be highly successful, with examples in Malawi where gliricidia was alley-cropped with maize where the prunings created a three-fold increase in maize production, which was increased a further 29 % when fertilisers were added. This fertilisation could be achieved with green manure, and other climate smart soil amendment approaches. The space and number of hedge rows to primary crop is dependent upon the field size and the regular growth height of the shrub/hedge. The hedge must not be planted so close that it shades the primary crop. In larger fields, larger deep-rooted timber trees can be planted between groups of rows of primary crop, providing soil benefits, reducing wind-speeds/erosion, and providing timber products.

This approach is considered climate smart as it increases productivity, provides a mechanism for more climate resilient farming, whilst increasing soil carbon levels.

Technical Application

While agroforestry practices are deemed highly beneficial and climate smart, it is important to ensure that proposed practices are appropriate for the specific context – the benefits of the agroforestry practice match the needs of the farmer - and are fit for purpose. Obtain advice from an agroforestry expert before embarking on secondary crop/hedge species selection.

To effectively implement alley-cropping the following should be carried out:

  • Step 1: Clearly understand the objectives of the intervention and identify an appropriate species for intercropping. For maize and sorghum in a smaller subsistence farm setting, selection and growth of hedge rows of a legumes such as cowpea or Gliricidia can provide sustainable benefits in terms of soil quality and secondary fodder/food products. In larger fields, timber trees can be planted every five to ten crop rows, depending on the height of the mature tree, and the shade-tolerance of the crop.
  • Step 2: Identify and understand key conditions, such as prevailing wind direction, and sunlight to ensure that the field is planted in an appropriate configuration, with primary crop and secondary (hedge/shrub/tree) crops planted in such a way as to benefit the primary crop and not compete with it. East to west row orientation should maxmise sunlight, topography permitting.
  • Step 3: For beneficial hedgerow growth with legume species such as Leucaena, cliricidia, and Sesbania sesban, the trees should be planted in rows between two and four metres apart, with individual trees planted as close as possible - between 10 to 15 cm apart. If planted closely, the trees will favour leaves over step growth, creating more mulch to prune for cover. Note that if rows are planted too closely, the secondary crop can dominate the available crop land reducing productivity. Furthermore, the closer the hedges, the more shade will present, which can depress crop growth, and also start to compete for soil water and nutrients, which is not beneficial.
  • Step 4: Once reaching sufficient maturity, after approximately six months (one-metre tall for legumes)– hedges should be pruned to generate mulch for working into the soil. Then the primary crop (maize) can be planted. Pruning once per month thereafter provides cover and ensures that light penetration is maintained. Planting legumes approximately six months before planting the primary crop can ensure that sufficient pruned material is available to incorporate into the soil to enhance growth.
  • Step 5: After harvesting the primary crop, hedgerows can be left to grow taller so that shade reduces weed grown, and to develop material to prune and incorporate into the soil again during the following crop cycle. However, hedges should not be allow to grow too high or dense as their roots will dominate the soil and out-compete primary crops for water and nutrients.

Before implementing any of these technologies, further research may be required beyond the guidance provided here. The World Agroforestry Centre (ICRAF) has many resources, toolkits and success stories that can support such research.

Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Alley cropping and pruning of leguminous hedges increases productivity of primary crops such as maize.
Increase Resilience
Helps farmers to be more resilient to climate change, by sustaining productivity and controlling soil health, especially when faced with changing climates.
Mitigate Greenhouse Gas Emissions
The planting of alley hedge rows of legumes and the introduction of pruned material contributes more carbon to the soil.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_17_AgroForestry_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Trees, shrubs, and hedges are incorporated into farming systems and have many different biophysical and socio-economic benefits.
  • Use of leguminous hedges no only provides pruned materials to provide cover, but they also help fix nitrogen in the soil.
  • Hedges planted in alleys can also provide other benefits such as edible seed pods for human or animal consumption.
  • Hedges and trees can reduce soil erosion from run-off or wind erosion.
  • Alley cropping can provide opportunities for diversified income – selling secondary crops and/or timber.
  • Alley cropped timber trees can provide building materials fire wood.

Drawbacks

  • Initial labour requirements will likely be significant; however, this will be primarily at the earlier stages of the intervention.
  • Ongoing maintenance such as pruning and maintenance of hedges will be needed, although relatively minimal.
  • There may be some costs involved in obtaining hedge seedlings.
  • Use of trees rather than hedges and shrubs introduces more labour, but yields more benefits.
Subscribe to Steep

Funding Partners

4.61M

Beneficiaries Reached

97000

Farmers Trained

3720

Number of Value Chain Actors Accessing CSA

41300

Lead Farmers Supported