Skip to main content

Carrying Capacity Improvement

Value Chain
Annual Average Rainfall
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Carrying capacity defines the number of Animal Units (AU; head of cattle or number of sheep, goats or other animals) that can graze in a rangeland unit without exhausting the vegetation and soil quality – essentially optimally utilising resources. Optimum carrying capacity is where a given unit of rangeland can support healthy populations of animal species, while allowing an ecosystem to regenerate, thus creating a sustainable balance. The stocking rate - defined as the number of animal species grazing a unit of rangeland for a limited period - must be kept fixed on an average year, meeting the carrying capacity to allow regeneration, the fallen seeds to rejuvenate and the soil to recover. However, stocking rates can fluctuate depending on the nature of the vegetation, rainfall variability, herd composition and management system. If the conditions are not favourable for vegetation growth during drought season, the number of livestock or the grazing period must be adjusted to avoid overgrazing. Moreover, the purpose of livestock keeping, i.e. for milk, meat, or wool production, will determine the carrying capacity of a rangeland unit. Factors such as climatic zone, rainfall dependency, class of livestock (steer, dry cow, calves, lactating cow and bull, etc), health of grassland and animal species affect the stocking rate. While relevant in all climatic zones, it is more applicable in arid and semi-arid zones where rainfall is most scarce. This climate smart practice increases production (meat/dairy), increases pasture resilience to extreme climate hazards (drought) and enhances soil fertility.

Technical Application

To effectively implement Carrying capacity improvement:

  • Step 1: There is no standard equation to determine the carrying capacity of an area, as many variables apply and factors relevant within each context including size of land unit, amount, frequency and timing of rainfall seasons, type of vegetation, species of animal, etc.
  • Step 2: Extension officers should aim to support farmers to continuously monitor rangeland status and realise the impacts of over-grazing and the benefits of finding an equilibrium.
  • Step 3: Constant monitoring of the pasture and animals must be carried out throughout the year to check if stocking rate aligns with the carrying capacity of the land unit. If land degradation is identified, adjustments to stocking rates should be considered, in the context of season and landscape regeneration.
    • For communal grazing land, it is ideal to use Animal Units (AU) to calculate the relative grazing impact of different kinds and classes of domestic livestock and/or even common grazing wildlife species for one month (AUM = Animal Unit Months). This information should support collective decision-making regarding rangeland resources.

        Using a conversion table of, the AUE (Animal Unit Equivalent) and the formula:

        1) multiply the number of animals to be grazed on the pasture by AUE to determine total AU, then

        2) multiply the total AU by the number of months planned to graze (see formula below or

        Worksheet A of the Range Calculator).

        Formula: _____________ x _____________ = _____________ x _____________ = _____________

                        # Animals         AUE(table)     Animal Units (AU)   Months (M)           AUM

  • Step 4: One option for effectively responding to carrying capacity challenges is shift or changing grazing species if high consumption species are placing pressure on a particular unit of land.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Higher meat and/ or dairy production per unit area.
Increase Resilience
Improved pasture (through proper management) allow higher numbers without retrogression, thus more resilient even to drought conditions, erosion, flooding, etc.
Mitigate Greenhouse Gas Emissions
Increases soil organic matter and plants-thus locks more carbon (c-sequestration).
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_43_CarryingCapacityImprovement_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Identifying, achieving and maintaining optimal carrying capacity helps to avoid rangeland degradation including vegetation depletion and soil erosion, bush encroachment, and optimises resource use.
  • Effectively monitoring carrying capacity can allow communities to respond to climate change impacts, resulting from shifting rainfall patterns and temperature regimes.

Drawbacks

  • Rainfall dependency, class of livestock and quality of grassland affect stocking rate.
  • The stocking rate must be monitored to avoid animal overcrowding, which might cause diseases to spread quickly.
  • It is important to monitor the plant species in your pasture and or rangelands to be able to determine its health and trend.
  • Reseeding should be considered in areas when land is degrading.

Use of Feed Supplements

Value Chain
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

General Feed Supplements are used to increase nutrients in livestock diets, with the aim of maintaining or improving livestock health through adequate animal nutritional balance and therefore productivity of milk or meat. These supplements include vitamins, amino acids, minerals, and other nutrients. Supplementary feeding can becoming either a regular part of the production cycle to help match feed demand to feed supply, assisting livestock farmers meet production requirements as defined by market specifications, or reserved for times of shortage during dry spells and/or droughts. The extent to which supplementary feeding is applied depends on the farm/business objectives and seasonal conditions. This is especially true in areas of low-quality crop residues and low quality pasture land.

Feed supplements are presented in granular, powder or block form and used during milk production and fattening stages for meat production. However, if consumed in excess feed supplements can be harmful to animals causing toxicity and if persistent, death.

Technical Application

To effectively implement Improved digestibility, Improved protein content:

  • Step 1: Inform farmers of the possible benefits of increased dietary protein in their livestock in order to implement dietary supplements.
  • Step 2: Identify a supplement contain the key amino acids - Methionine, Lysine, Threonine, and Tryptophan, in consultation with suppliers and veterinarians.
  • Step 3: Added supplements to green plant residue (silage) as guided on packaging or by supplier to increase the efficiency of protein in livestock. Ensure that supplement amounts are suitable for animals and the type of feed being supplemented.
  • Step 4: Ensure that supplements sourced will be consistently available from suppliers in the region. These supplements can be purchased at most agricultural shops, including rural areas.
  • Step 5: As a low-cost option, farmers can formulate rations specific to their livestock. These rations are only for domestic use and not commercial.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Can supplement conventional feed to enhance productivity
Increase Resilience
Can help livestock get through lean periods by preserving fodder.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_42_UseofFeedSupplements_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Feed supplements are used to balance animal nutrition, resulting in high market value and quality of livestock.
  • They help improve animal productivity and nutrition.
  • Beneficial in areas of poor pasture or during drought seasons where animal feeds are scarce.

Drawbacks

  • Excessive consumption of supplements can be toxic to animals and can lead to death if over consumption persists.

Improved Digestibility, Improved Protein Content

Value Chain
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Improved protein content in animal feed can positively impact productivity, such as the quality and quantity of meat and milk.  With the increase in global demand for meat and dairy products, the increase of protein in livestock diets is extremely important. Key to the absorption of protein in livestock diets is the improved digestibility of protein. For protein to be utilised efficiently by livestock i.e. consumed and converted into body protein and resulting in bigger and better-quality meat, certain amino acids need to be present. Thus, to maximise protein deposition in livestock, the required amino acids must also be included in the feed. Amino acids have been added to livestock feed for over 40-years. The most common amino acids added to feeds are Methionine, Lysine, Threonine, and Tryptophan. With the expansion of inexpensive plant-based proteins (soybeans etc.) and increasing demands for meat, plant-based proteins offer an alternative or supplement to amino-acids, contributing to greater efficiency of conversion of proteins from feed to meat. Plant-based proteins also require less monitoring than synthetic additives, but amino acids are often needed to maintain digestibility. Improved livestock productivity and conversion is climate smart because there is more efficient conversion of food to weight gain and less livestock pressure on land, supporting a more efficient value chain.

Technical Application

To effectively implement Improved digestibility, Improved protein content:

  • Step 1: Inform farmers of the possible benefits of increased dietary protein in their livestock in order to implement dietary supplements.
  • Step 2: Identify a supplement contain the key amino acids - Methionine, Lysine, Threonine, and Tryptophan, in consultation with suppliers and veterinarians.
  • Step 3: Added supplements to green plant residue (silage) as guided on packaging or by supplier to increase the efficiency of protein in livestock. Ensure that supplement amounts are suitable for animals and the type of feed being supplemented.
  • Step 4: Ensure that supplements sourced will be consistently available from suppliers in the region. These supplements can be purchased at most agricultural shops, including rural areas.
  • Step 5: As a low-cost option, farmers can formulate rations specific to their livestock. These rations are only for domestic use and not commercial.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Less feed is required to reach the same levels of production. Potentially this means less livestock pressure on land.
Increase Resilience
Less is required to reach the same levels of production. Potentially this means less livestock pressure on land.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_41_ImprovedDigestibilityImproved_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Protein absorption in livestock contributes to increased meat and milk production.
  • Less livestock pressure on land.

Drawbacks

  • Synthetic amino acids require constant monitoring.

Non-Conventional Feeds

Value Chain
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Non-Conventional Feeds (NCF) are either traditional or commercial animal feed-types that are not traditionally utilised as animal feed. These feeds are generally in one of two categories: by-products of agroecological industrial processes, or plants/plant materials from other processes. Examples of industrial by-products include groundnut cake, molasses and cotton seed meal, which are outputs from other processes and are found in proximity of manufacturing points, but often have a short shelf-life. Plant materials can be vegetable peels or locally available crop residues such as maize stalks and other remaining parts of harvested plants not consumed by humans. NCF decrease the demand of land to grow fodder, act as an alternative source for animal feed, resulting in the decrease of food competition between animals and humans ensuring food security. Furthermore, the use of bi-products optimises the use of raw materials and can increase profitability for the producer and the farmer.

Technical Application

To effectively implement NCF practices:

  • Step 1: Determine potential sources of NCFs in the local area and consider if the potential products are suitable (provide enough energy, are digestible, palatable to livestock animals, etc) and require additional investment to access or use.
  • Step 2: Collect for free/negotiate lower rates with producers of agroecological industrial process biproducts or plant materials to gain access to their ‘waste’ materials.
  • Step 3: Determine how sustainable and consistent the supply will be from the providers. If possible, identify a range of suppliers to mitigate potential losses of stockpiled NCFs.
  • Step 4: Before being used as feed, NCF’s from agroecological processes must be appropriately processed - (grinding (8 mm) and pelleting) and mixed into a uniform blend. Hence, labour requirements may increase. This could be mechanised.
  • Step 5: Livestock should be monitored when these feeds are introduced to ensure digestibility of the product for the animals.
  • Step 6: Based on advice from the suppliers of agroecological industrial process biproducts, ensure appropriate storage of materials to avoid loss of nutrition, pests and waste.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Can supplement conventional feed to enhance productivity.
Increase Resilience
Reduces pressure on land to produce fodder.
Mitigate Greenhouse Gas Emissions
As these are by-products of industrial processes, no additional inputs to produce fodder are required.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_40_NonConventionalFeeds_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • The use of NCFs could be a cheap and good source of nutrients for livestock.
  • NCF act as an alternative source for animal feed, resulting in a decrease of food competition between animals and humans.

Drawbacks

  • NCF’s need to be handled properly to avoid formation of moulds that are not good for animal health.
  • Farmers need to acquire skills on how best to conserve these residues for animal consumption, like drying before storing to avoid the loss of nutritional value.

Physical Storage Options

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Grains are stored to reduce the opportunities for loss, damage or infestation by pests. On the farm grain storage can be short-term (>3 months) before it is moved to the supply chain, long term (3-12 months) while farmers store it for home consumption, to sell when prices are more favourable or for planting in the next season. During this phase of post-harvest processing, grains can be stored in bags, silos or other bulk storage containers. Bag storage utilises permeable sacks that will allow air movement in and out of the bag. Structures can be built to store grains and solid-wall bins or silos should be used in areas where grains can be dried properly. Other options include airtight underground pits, steel bins, while concrete silos and warehouses can also be used as storage options. While storing grains to ensure favourable storage, facilities should be kept clean, covered, and never exposed to the elements.  However, pest control measures need to be established, such as adhering to acceptable grain moisture content levels at storage to deter insect infestation, as pests (rodents, insects, etc.) can devastate grains in storage. Physical storage options are built to meet the demand and supply of grains season-to-season and to make seeds available for the next planting season.

Technical Application

To effectively implement Physical Storage Options:

  • Step 1: When making a choice of which storage option to choose, farmers must consider the type of crop to be stored, storage requirements of the crop and the form in which the crop must be stored (for 0-6months/3-12months).
  • Step 2: Grains must be stored in a dry place with a constant temperature.
  • Step 3: Crops should be dried and have low moisture content prior to storage.
  • Step 4: Airtight containers should be used to avoid insect infestation.
  • Step 5: Based on farmer resources and time of storage, there are a number of containers that can be utilised to store harvested crops including metal silos, polythene sacks (that can be layered), mud silos, plastic bags.
  • Step 6: As a last measure, insecticides in the form of a powder can be applied to harvested crops. The powder comes in pre-measured packets and are low dosage so generally safe to handle. Information is provided on each packet and should be read before integrating it into the crop. Grain needs to be cleaned before consumption.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Reduces losses during storage.
Increase Resilience
Storage that is protected from flooding, extreme rain and heat will protect grain. Potential to store until prices are higher and increase income.
Mitigate Greenhouse Gas Emissions
More efficient use of resources.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_39_PhyscialStorageOptions_0.3_2019-07-18_0.pdf
Benefits and Drawbacks

Benefits

  • Storage options can support food security and assist farmers respond to supply and demand, leveraging favourable market prices and conditions.
  • Suitable for short- and long-term storage.

Drawbacks

  • Uncontrolled grain moisture may lead to insect infestation and loss in grain.
  • Insect fumigation may contaminate grains.

Drying Techniques

Value Chain
Annual Average Rainfall
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Drying techniques are agricultural practices applied to assist with the balance of moisture in grains post-harvest, determined by a combination of ambient temperature and relative humidity. Spoiling due to insufficiently dried grain is one of the main causes of grain deterioration, loss in grain quality, and thus market value. Grains have the capability to absorb or evaporate moisture, and a balance of moisture content in the air and grains should be sought to achieve an Equilibrium Moisture Content (EMC). EMC prevents the formation of moulds that may affect the quality of grains, spread of pests and germination of grain seeds. After harvest, transportation and threshing, grain needs to be further dried to be preserved. Natural drying techniques are based on ambient air circulation to reduce the moisture content of the grain before storage. Artificial drying techniques apply fans and/or heating elements to move air and maintain constant temperatures .Natural drying (sun drying) is the preferred, commonly used agricultural technique in southern Africa and does not require use of machinery. Drying techniques preserve the contents of seeds thus assuring sustainable agricultural productivity and the practice as climate smart.

Technical Application

To effectively implement Drying Technique practices:

  • Step 1: Harvest crops.
  • Step 2: Consider the number of different crops that need to be dried.
  • Step 3: Dry the crops naturally using air temperature or direct sunlight or artificial drying through using fans or other mechanical means.
  • Step 4: Never place crops directly on the soil but rather on a cement area, woven mats or a layer of sacks.
  • Step 4: Livestock should be kept away from drying grains to prevent contamination and loss.
  • Step 5: Farmers should consult storage life charts that will help determine dry crop characteristics and approximate times for drying.
  • Step 6: Cover all drying grain at night to prevent loss or damage.
  • Step 7: Sorghum should be left on the seed, maize should be de-husked and left on the cob, grain and pulses are normally left in their pods.
  • Step 8: Monitor the stored grain by checking at least every two weeks.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Reduces potential losses of ripened grain.
Increase Resilience
More grain of a higher quality to consume and sell.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_38_DryingTechniques_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Prevents loss in grain quality.
  • Outside on a flat surface, drying system costs less.
  • The drying crib system can be used for many years.
  • Forced air/hot air dryer systems are not weather dependent.

Drawbacks

  • Imbalanced EMC leads to low quality seed, possible mould/decay and possible germination of grain seeds.
  • The natural drying technique is not suitable for humid climates as EMC is difficult to achieve without artificial drying.

Changing Harvest Time

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Changing harvest time refers to adjusting harvest time to focus on optimal moisture conditions, thereby avoiding losses from mould, decay and possible disease, while also considering optimal maturity of the crop. This approach encourages the reduction in potential losses of ripened grain and increases potential higher quality grain for consumption or market. Harvesting of crops when physiologically mature can minimise losses during transportation to the homestead. Physiological harvesting refers to the time when a grain (fruit, etc.) can be separated from its parent plant and continues to ripen over time. Farmers should consider planting earlier or later or consider planting faster or slower maturing varieties to avoid issues of post-harvest loss. This is a climate smart practice because it reduces potential losses of ripened grain, increase the quality of grain harvested, and is overall a more efficient use of resources, all while mitigating the spread of diseases and reducing GHG emissions.

Technical Application

To effectively implement Changing Harvest Time practices:

  • Step 1: Consider researching recent rainfall records and consult national meteorological services to as accurately predict start of rainy season as possible.
  • Step 2: Farmers should consult data provided by the African Post Harvest Loss Information System (APHLIS), which provides information on harvest loss and additional resources to consult.
  • Step 3: Consult with national agricultural extension and research to determine growing periods of chosen crops. Request information about quicker or slower maturing seeds.
  • Step 4: Plant crops at the right time so as to avoid harvesting during rainy season.
  • Step 5: Harvest as soon as crops are physiologically mature.
  • Step 6: Wait 24 hours after a rain period to harvest if rain is unavoidable. This may take several days, however, harvesting crops after one rain is better than leaving it for an entire rainy season.
  • Step 7: Crops should be transported to the storage for immediate drying.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Reduces potential losses of ripened grain.
Increase Resilience
More grain of a higher quality to consume and sell.
Mitigate Greenhouse Gas Emissions
More efficient use of resources.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_37_ChangingHarvestTime_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Reduces the potential loss of ripened grain and increases potential higher quality grain for consumption or market.
  • It improves crop production, food security and farm income.

Drawbacks

  • Moisture from rainfall at harvest time can risk crop degradation post-harvest, due to mould, decay and disease.
  • Different crops have different growing seasons, and this should be known and monitored constantly, specifically as climate change has been shown to alter growing seasons, which will in turn impact harvesting times.

Best Practice Harvesting Techniques

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Best Practice Harvesting Techniques are formalised harvesting practices intended to reduce breakage and bruising of crops during collection and storage. These techniques minimise harvest losses and maintain the quality of the produce. To maximise this approach, factors such as moisture content, cleanness of the grain, colour, odour and potential pest infestation need to be considered during harvest periods. Considering each of these factors will increase grain value as quality standards are directly related to grain price. Harvesting can be performed manually or mechanically, with obvious cost implication of employing the latter.

Technical Application

To effectively implement Best Practice Harvesting Techniques:

  • Step 1: Obtain equipment and supplies needed for the harvest and post-harvest activities, e.g. clean sacks, drying mats, etc.
  • Step 2: Allocate drying and threshing areas, ensuring the areas are swept, dry, and there is no/limited access for livestock or rodents. If in a dry climate or season, drying outside is optimal. If necessary, construct drying cribs elevated from the ground with rodent guards on legs can reduce access for rodents.
  • Step 3: Allocate sufficient storage space for the harvested crop.
  • Step 4: Clear weeds from the farm to prevent weed seeds from contaminating the harvest.
  • Step 5: Place the harvested crop directly onto clean mats and bags to avoid contact with the soil, which may lead to moisture uptake and also prevent contamination with tiny Striga.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Reduces potential losses of ripened grain.
Increase Resilience
More grain of a higher quality to consume and sell.
Mitigate Greenhouse Gas Emissions
More efficient use of resources.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_36_BestPracticeHarvestingTech_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Best practice harvesting techniques improve grain quality and minimise post-harvest loses.

Drawbacks

  • Lodging can cause significant losses as well as contamination.

Agroforestry: Silvo-Pasture

Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Agroforestry is a land management practice that combines the planting and management of trees and shrubs with crops and pasture, providing benefits of soil health, crop yields, resilience to climate change, biodiversity and economic opportunities. Agroforestry encompasses numerous practices, including silvo-pasture, agro-silvo cultural, and agro-silvo-pastural. One such successful agroforestry practice is silvo-pasture – the planting of trees and shrubs within livestock grazing pasture lands. Not to be confused with agrosilvopasture (combination of crops, shrubs/trees and livestock, silvopasture is the combination of trees and shrubs with pastural grazing land. The trees can be regularly or irregularly placed, and in addition to improving soil conditions in pasture lands, also provide production of protein-rich tree fodder for on farm feeding and for cut-and-carry fodder production. If growing larger species of tree, coppicing can also produce timber for building materials and firewood.

Technical Application

To effectively implement hedge planting:

  • Step 1: Purchase saplings of selected tree species from a local nursery or grow saplings in separate on-farm nursery. If growing on-farm, saplings should be held-up with an upright support bamboo/wooden pole. Ideally, the farmer should begin exploring silvopasture tree species beginning with indigenous trees, such as acacias, and other local trees. It is worth considering a mixture of species, as well as mixed shallower and deeper rooted trees.
  • Step 2: Once at a meter or over in height, transplant to pastures, surrounding each individual sapling with a wire mesh cage-tube or insert into five-centimetre diameter PVC pipe to protect from browsers. Plant at least ten to twenty meters apart, in either a random or uniform pattern. This is a matter of preference.
  • Step 3: Once saplings are planted, only allow grazing livestock (cows, sheep, ducks, geese, chickens) in the silvopasture, avoiding browsers (goats, etc), which will strip, damage or destroy the saplings.
  • Step 4: Once mature and above browsing height, two plus meters, remove protective cage or pipe.
  • Step 5: Depending on species, pruning, coppicing etc should be performed every two months to ensure that trees remain healthy and productive, while maximising outputs for in-field and cut and carry fodder.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Diversified agricultural outputs supports sustainable agricultural productivity, providing multiple streams of revenue, reducing labour and cost for land clearance and maintaining healthy pasture land.
Increase Resilience
As climate change alters local grazing land, silvopasture can reduce overgrazing and land degradation. Trees introduced into pasture can create a more positive environment for livestock, including shade in warmer climates, and shelter during rainfall.
Mitigate Greenhouse Gas Emissions
Retaining trees within pasture land and minimising complete conversion of land reduces greenhouse gas emissions and retains carbon in the soil.
Additional Information
  • Balehegn, M., 2017. Silvopasture Using Indigenous Fodder Trees and Shrubs: The Underexploited Synergy Between Climate Change Adaptation and Mitigation in the Livestock Sector. Chapter from book The Need for Transformation: Local Perception of Climate Change, Vulnerability and Adaptation Versus ‘Humanitarian’ Response in Afar Region, Ethiopia (pp.493-510). ResearchGate.
  • Jose, S. & Dollinger, 2019. Silvopasture: a sustainable livestock production system. Chapter in J. Agroforest Syst (2019)
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_34_SilvoPasture_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Presence of trees can be beneficial to livestock in terms of shade and shelter, as well as enhancing carbon storage and enriching biodiversity.
  • Manure from livestock can improve soil health in grazing land.
  • Leaf litter and pruned material also add organic matter to soil, improving productivity and drainage.
  • Presence of trees can contribute to reducing soil erosion.
  • Trees can produce numerous forest products, including timber for firewood and construction.
  • There is an opportunity to diversify income for small-holder farms and increase food security.
  • Tree trimmings and leaf litter can also be used for in-field or cut and carry fodder.

Drawbacks

  • Requires some investment in terms of purchase of seed and/or saplings.
  • May require adjustment for mixed grazing and browsing livestock patterns.
  • If dietary requirements of livestock are not complete, animals may strip bark from trees. This can be avoided by ensuring that pasture stocking is not too high, and best efforts are made to encourage pasture health and supplementing livestock feed with the necessary minerals, energy and protein.

Boundary Planting

Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Boundary planting, also known as live fence planting, is a technique used to protect crops from the interference of people and animals that can disturb plant growth. Trees/shrubs are a good example of this approach as they can form a shield when planted along the boundaries of the garden or surrounding a planted field. The trees/shrubs act as wind break to shield plants against strong winds causing physical damage to plants themselves, or the removal of soil (erosion). Additional benefits include the use of branches for firewood or building materials, and the other parts of trees can be used as fodder, fruit or leave harvested for consumption, or for medicinal use. Tree/shrub spacing is critical, as trees that have dense canopies can conversely cause destructive down-drafts, negating the intended benefits. Boundary planting helps limit global warming by mitigating GHG emissions through reducing harmful gases such as, carbon dioxide, from the atmosphere and releasing oxygen.

Technical Application

To effectively implement Boundary Planting practices:

  • Step 1: Plant long lines of two fast growing trees, Caesalpinia velutina trees, between a Bombacopsis quinate and a Swietenia humilis to be replaced over time.
  • Step 2: Consider planting the boundary trees 1.5 metres apart along pre-existing fences.
  • Step 3: Attach metal fencing to the trees to support the large trees without endangering their growth. Harvest fodder when the tree is overgrown.
  • Step 4: Prune lower brunches to encourage upward growth of trees and reduce shed on the plants.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Increases availability of tree shrub products (nuts, fruits, timber etc.) and biomass, which improves soil fertility, and thus production.
Increase Resilience
Reduces erosion of soil and evaporation. Increases water retention and infiltration. Diversifies income sources. Improves yield stability.
Mitigate Greenhouse Gas Emissions
Locks more carbon in plants and in the soil.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_33_BoundaryPlanting_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Live fence planting is cost effective, conserves soil moisture, acts a windbreak and reduces soil erosion. These trees have various benefits such as medicinal use, mulch, livestock feeds, fruits, bee forage, timber and firewood.
  • Maintenance of boundary trees is low with short, medium and long ecological and economic benefits.

Drawbacks

  • Boundary planting occupies more land than a single row.
Subscribe to Animals

Funding Partners

4.61M

Beneficiaries Reached

97000

Farmers Trained

3720

Number of Value Chain Actors Accessing CSA

41300

Lead Farmers Supported