Skip to main content

Resistant Breeds

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Resistant breeds Disease resistance is the reduction of pathogen growth in or in a plant or animal; denoting less disease development in a particular breed than that which is relatively susceptible and is specific to a particular strain of disease or attribute. Breeding resistant breeds  . Resistance” means the animal actively fights infection by various means. Building resistant breeds can be done through selection. Selective breeding, sometimes called artificial selection, where different breeds of animals with desired characteristics or attributes like resistance to. drought, heat, cold, salinity, flood, submergence and pests can be developed by selective breeding and thus able to relatively thrive in some conditions which would otherwise not be able to, e.g. This assists in the reduction of diseases, results in healthier productive animals and reduces risk of secondary infections in livestock. These breeds create a potential for more efficient conversion of feed into meat or diary, and thus a climate smart attribute since by reducing emissions per unit of production (proportionately less faeces are dropped per unit consumption of feed) as well as contributing to food security.,. In the Southern African Development Community (SADC) region, local breeds are more resistant to many of the pests and diseases and may be the best option for some farmers in the Arid and semi-arid areas of the region.

Technical Application

To effectively implement resistant breeds:

  • Step 1: Breed livestock with increased resistance against pathogens or other environmental stressors (heat stress).
  • Step 2: Select animals of higher general disease resistance (resistance to several diseases) using a heritable indicator such as natural antibodies.
  • Step 3: Keep record of good performing animals; unhealthy or easily prone of weak animals should not be used for mating; males should be castrated leaving best specimen to breed in subsequent seasons.
  • Step 4: Breed or inseminate the selected cows with desired or selected bulls or semen of the desired traits.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Reduces incidence of disease, results in healthier, more productive/efficient animals.
Increase Resilience
Sale of livestock is a common coping strategy so having more/better livestock to sell increases resilience.
Mitigate Greenhouse Gas Emissions
Potential for more efficient conversion of feed into meat/diary which can reduce emissions per unit production, thus less GHG emissions.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_54_ResistantBreeds_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • With resistant breeds, selecting of male breeds is a long-term climate smart adaptation because they are likely the most resistant.
  • Farmers should identify females in heat and isolate them with selected male animals. This results in productivity increase, higher resilience and cost effectiveness.

Drawbacks

  • Breeding should be controlled to achieve best practice results and farmers should be able to detect when female animals are on heat.
  • Parental performance records should be kept at all times.

Alternative Breeds

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

The Alternative breeds approach involves substitution of breeds, introducing a new (alternative) breed with a current breed to potentially increase production levels in a farm. Breed substitution involves genetic improvement of cattle and goats especially in dairy farming and meat production. Alternative breeds are introduced in order to ascertain competition between breeds based on health, fertility, performance, profits and management requirements. The substitution breeds are picked because there some traits that may be lacking in current breeds at the farm. For example, some farmers in Malawi who have introduced the Black Australop breed of chicken, either by crossbreeding with local chickens or replacing the local chicken altogether. This breed produces much more meat and lays more eggs, which increases farm production and income. This is a climate smart option as it introduces breeds that may require less water or can manage with lower quality feed – thereby reducing costs, and risks.

Technical Application

To effectively leverage alternative breeds:

  • Step 1: Consult with national agricultural research and extension services to identify adaptable breeds available in the country/region, noting type of traits suitable for the particular ecological zone, and how to access stock. Traits to focus-on include health, milk production, disease tolerance, fertility, economic performance and adaptation to climate change and climate variability. Assisting with sourcing potential alternative breeds is a key role for Extension Officers.
  • Step 2: Before selecting a substitution breed, the current breed must be evaluated to identify traits that are lacking, as well as compatibility. This will help in identifying traits that need to be improved.
  • Step 3: Determine the cost effectiveness of the new breed to the area and or farmer, in terms of feed conversion rates, disease resistance, environmental conservation etc.
  • Step 4: Consistently keep record of the livestock performance and behaviour for discussion with other farmers and extension officers.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Switching to alternative breeds can increase productivity in meat, milk and egg production.
Increase Resilience
Changing to alternative breeds can form part of a successful adaptation strategy as climates change.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_51_AlternativeBreeds_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Alternative breeds are used to improve the genetic qualities of livestock.
  • This agricultural practice improves biological diversity, ensures food security, increases farm income and most importantly reduces risk as cross breeds in future will be more resilient to climatic variations.

Drawbacks

  • Requires research to identify suitable breeds.
  • Livestock will require frequent monitoring to ensure cross-breeding is yielding required results.
  • Replacement breeds should also be monitored to ensure they are adjusting to the local conditions.

Assisted Reproduction

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Assisted reproduction refers to artificial insemination, where semen is deliberately introduced to fertilise eggs in domestic animals. Artificial insemination helps in obtaining genetic improvements that yield higher production levels. This practice is more expensive but more efficient than natural reproduction. Artificial insemination reduces the risk of disease transmission and injuries or accidents during mating. Sperm duplication can be done from a single ejaculation to make hundreds of doses and distributed across farmers to have variety of breeds rather than off-spring from single bulls. This prevents inbreeding and promotes hybrid vigour among farmers’. In the southern African context, where most grazing is communal, use of bulls to improve breeds can be challenging as it is difficult to adopt a grazing system that will ensure good quality breeds are able to pass their progeny to the next generation, as young and likely non-superior bulls are likely to mate with cows during grazing. To achieve genetic improvement using open grazing requires controlled grazing systems, e.g. by use of paddocks to manage bulls grazing and mixing with cows.

Technical Application

To effectively implement assisted reproduction using artificial insemination:

  • Step 1: A qualified veterinarian or service provider should be readily available and preferably contracted to carry out the procedure as they should have the necessary training, instruments and facilities to carry out procedures;
  • Step 2: The farmer should suggest the type of breed for his animal, and the veterinarian should advise the farmer on the feasible breed for the cow.
  • Step 3: The farmer has to identify the cow on heat by observing the heat signs (uneasiness, making loud unusual noise, mounting others, standing when mounted, producing mucus discharge from the vulva, etc.)
  • Step 4: The identified animal is isolated from the rest of the animals.
  • Step 5: Communicate with the veterinarian or trained service provider to carry out the procedure by determining the readiness of the cow to undergo the AI service (stage of heat cycle). Early reporting increasing chances of successful conception.
  • Step 6: The veterinarian or service provider then carries out the procedure to the cow after confirming readiness of the animal.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Assisted reproduction increases the chance of conception, producing more cattle for milk or meat.
Increase Resilience
Assisting reproduction in hybridised cattle can form part of an adaptation strategy.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_50_AssistedReproduction_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Artificial insemination reduces injuries and accidents during mating, especially with heavier animals such as cattle.
  • Farmers can collect semen and sell it to other people to obtain cash that will assist them in their daily activities to manage livestock.

Drawbacks

  • It is more expensive but more efficient than natural processes.

Hybridisation Traditional Breeds

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Hybridisation is the agricultural practice of genetically manipulating flora and fauna that differ in heredity. Hybridisation and mutations are the main source of hereditary variation and can result in the increased growth rate, manipulated gender ratios, increased yields, sterile animals, improved flesh quality, increase disease resistance and improve environmental tolerance. Intraspecific hybridisation method is used for livestock breeding whereby individuals of different breeds or strains are mated. Distant hybridisation for livestock is difficult to accomplish as hybrids are usually sterile. Hybrid animals are extremely difficult to produce and specialists often spend their careers attempting to create a new breed of animal. Hybridisation is plant species is more common and has a greater success rate than animal species, however successfully creating a hybrid species remains difficult to achieve. Specialists are trained on the gene sequence and different methods for accomplishing hybridisation. The development of hybrid flora and fauna is often undertaken to address a problem or issue. For example, to address socio-economic challenges agricultural researchers may attempt to produce a species of chickens who lay lager eggs or cows who produce more milk. Hybridisation is also applied to address the challenges of a changing climate including producing crops that are more drought resistant. Due to the research and development of these hybrid species they are expensive to access and often not available in remote areas. Traditional breeds are pure individual species with no DNA alterations. They are often endemic to an area and because of this have evolved and adapted to the geophysical area they are found. Thus, traditional breeds are often found in certain areas, and through traditional knowledge have been incorporated into local farming systems for generations. With an increasingly globalised world, it is difficult to maintain distinct traditional breeds as trade in species, seeds etc. is increasingly prevalent. However, with a new focus and dedication of farmers and researchers to explore indigenous knowledge there is an increased focus on reinvigorating the incorporation of traditional breeds of both flora and fauna.

Technical Application

To effectively leverage hybridisation:

  • Step 1: Contact national extension and research as they are often working on developing new species of flora and fauna to meet local challenges including climate variance and introduce them to local farmers.
  • Step 2: Research best methods applied to the practice of hybridisation in the region.
  • Step 3: Meet with national agricultural extension and research staff as well and local breeders to determine desirable characteristics and possible  crossing of livestock differing in heredity. For example, the mating of two different goat breeds to obtain an improved breed.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Increased the milk yield or weight gain of animals, thus increasing the amount of food that farmers can produce within available resources.
Increase Resilience
Breeding for resilience to: Pests/disease; and Heat and drought
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_49_HybridisationTraditionalBreeds_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • This agricultural practice is widely used in breeding to increase growth rate, manipulate sex ratios, produce sterile animals, improve flesh quality, increase disease resistance and improve environmental tolerance.

Drawbacks

  • This agricultural practice is widely used in breeding to increase growth rate, manipulate sex ratios, produce sterile animals, improve flesh quality, increase disease resistance and improve environmental tolerance.

Manure Collection, Storage and Treatment

Value Chain
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Manure is organic matter that is used as an organic fertiliser in agricultural practices, conditioning and adding nutrients to soil, generally derived from animal faeces. Manure is the best source of fertiliser available to a farmer, as it can be readily available from livestock, and it a more environmentally friendly option over synthetic fertilisers. Animal manure, compost and green manure are the three different types of manure used in soil management. Manure is collected in different forms: liquid manure, slurry manure or solid manure, and treated in different systems depending on its state. Liquid and slurry manure are stored in liquid (slurry) manure storage systems whereas solid manure is stored in sacks in order to allow air and toxic vapours to move in and out, as well as to maintain the moisture content. The manure is collected and treated (as described below) in order to kill pests that may feed on crops during the application period. The manure is further cleaned to remove unwanted substances such as sticks, and large lumps formed in the manure.

Technical Application

To effectively implement manure collection, storage and treatment:

  • Step 1: Use gloves before handling animal manure from any livestock.
  • Step 2: Use shovels and wheel barrows to load and transport the material.
  • Step 3: Store manure in a contained area, with a solid bottom (cement pad) to prevent runoff and leaching into local waterbodies or groundwater.
  • Step 4:  Mix all types of manure with organic substances such as vegetable waste, garden debris, dead leaves, sawdust, wood ash, hay and straw etc. to add structure and other organic compounds to the soil.
  • Step 5: Turn mixed manure over regularly to allow for combining of nutrients and further aeration.
  • Step 6: Cut-up large particles of animal manure to no more than 10 cm in size.
  • Step 7: Spread manure evenly on field a few weeks prior to planting or during planting. It can also be applied in micro-doses around crops and trees directly.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Organic matter in manure can be used to fertilise crops, improving soil health and productivity.
Increase Resilience
Manure collection and management can contribute to crop production.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_48_ManureCollectionStorageAndTreatment_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • The use of manure helps to maintain the organic-matter content of the soil, which can improve soil structure, increases nutrient availability and crop productivity.
  • An additional benefit is that it increases soil carbon and reduces atmospheric carbon levels.
  • Manure application can be spread across fields or in micro-doses.

Drawbacks

  • Manure leachate can carry concentrated ammonia and other potentially harmful organic compounds. Therefore, it should be contained in one area to prevent possible negative environmental impacts from runoff.

Rotational Grazing

Value Chain
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Rotational grazing is a practice of moving livestock between different units of pasture in regular sequence to allow the recovery and regrowth of pasture plants after grazing. This facilitates management of the nutritional needs of the various types of livestock whilst maintaining pasture productivity. Management of intensive grazing/controlled grazing is a climate smart practice as it results in improved forage harvest, soil fertility, resistance to drought, reduced pasture weeds establishment, reduced wastage of forage and soil compaction.

Rotational grazing can also be combined with cut and carry approaches - when managed correctly; rotational grazing can provide enough forage growth early in the grazing season for producers to harvest feed for later use in some paddocks as rotation continues. Farmers can use temporary fence systems to manage the size of, and access to pastures.

Technical Application

To effectively carry out rotational grazing practices:

  • Step 1: Plan livestock grazing system, based on livestock types, stocking density, pasture crop hardiness and production, rainfall, soils and available alternative pasture fields and space, focusing on the nutritional and forage needs of the animals.
  • Step 2: Use temporary electric fence systems to manage the size of the paddock.
  • Step 3: Move livestock between paddocks every set number of days (two days; one week; one month).
  • Step 4: Assess forage quality and quantity, regulating the acreage of access and control by implementing the electric fence system, which uses electrified fencing to determine which parts of the pasture that the livestock will access.
  • Step 5: Monitoring efficacy of the system, changing rotation periods and extend recovery time for grazed land, if land becomes degraded.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Increased and more productivity per unit area.
Increase Resilience
Gives land time to recover after grazing and hence, being more resilient to extremes.
Mitigate Greenhouse Gas Emissions
Increases vegetation cover and soil organic matter and locks carbon.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_47_RotationallGrazing_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Controlled rotational grazing is an effective conservation practice to apply that improves animal management, increases soil fertility, forage productivity, and reduces soil nutrient depletion and soil erosion.

Drawbacks

  • Appropriate land access is a issue, with farmers requiring substantial land or approval and agreement from the community to operationalise the approach.

Cut and Carry

Value Chain
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Cut and carry is the agricultural practice of cutting and carrying fodder crops away from the field that they are grown in to feed to livestock. Fodder trees, shrubs or grasses are sources for livestock feed in this practice. Cut and Carry is a key CSA practice where overgrazing is a problem. This practice takes pressure off grazing land at critical periods, reduces land degradation caused by livestock and increases soil organic matter, while still feeding livestock for productive outcomes. This practice can also be used in more intensive livestock production where livestock are kept housed for periods stretching from half a year to a year and improved nutrition is required. However, fodder production can be costly in terms of cultivation, requiring significant management over and above the livestock themselves. Fodder is collected from sites where it grows naturally, or it can be grown in fodder banks, hedges, boundaries, etc. Feeding livestock using this approach can ensure the supply of a large quantity of high quality and palatable fodder within a short time, as well ensuring soil is not disturbed through open grazing systems, thus a good CSA practice. It can be adapted to the farmer’s needs and can provide a way of introducing the farmer to the concept of improving livestock at the same time as conserving soil.

Technical Application

To effectively implement cut and carry systems:

  • Step 1: Cut and carry commences with the cutting of the crop.
  • Step 2: Cut crop when plants are fully mature (vegetative growth and plant sugars are at their peak). This ensures that protein, digestible energy and dry matter percentage are at their highest potential.
  • Step 3: Fodder can be fed directly or dried as hay or preserved as silage to conserve its value and be fed to livestock during the dry season or other critical times throughout the year.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Fodder can be harvested on multiple occasions during times of plenty and preserved for later, rather than leaving as standing hay.
Increase Resilience
Reduces pressure of grazing by limiting period livestock tread on land causing denudation at critical periods (with less cover).
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_46_CutAndCarry_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Improves fodder production and farm income.
  • Growing fodder crops in rainy seasons encourages fodder conservation for dry season feeding.
  • Can be combined with crop rotation and intercropping to form part of positive farm management practices.
  • Cut and carry can relieve pressure from pasture and grazing land, contributing to control of over-grazing, while improving soil quality.
  • Can create job opportunities and income generation for youth farmers.

Drawbacks

  • The practice will require additional labour resources.
  • Can be costly in terms of management.
  • Farmers must have enough land to grow fodder on or have access to communal land.
  • Soil condition in the fodder fields must be carefully monitored to ensure that soil nutrients aren’t depleting.
  • Fodder storage must be monitored to ensure bacteria and mould do not affect the quality of feed.

Increased Palatability

Value Chain
Annual Average Rainfall
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Palatability - referring to plant features or conditions that encourage animals to feed on the plant when given a choice – is important as the ability or willingness of animals to feed on specific forage determines the efficiency of production of animal products. When feed is consumed in larger quantities, depending on its nutritive value, it helps increase milk and/or meat production. Plants with stiff and harsh leaves are generally not palatable to animals, unlike those with softer leaves and grass. The nutritive value of the plant matters when it comes to palatability. Palatability will be determined by the texture, aroma, succulence, hairiness, leaf percentage, sugar content and other factors. Moreover, leaves are more palatable than stems. Palatability of plants can be increased by grazing livestock at the optimal grass growing stage before seed formation, using a High Intensity, Low Frequency (HILF) grazing pattern which allows uniform grazing of pastures and gives an allowance for regrowth and thus overall, uniform soil cover. Addressing palatability is often of greater concern during dry season, when grazing/pasture is less common, and farmers have to rely on stored silage.

Technical Application

Traditional knowledge can also yield positive results in identifying sources of alternative dry season feeds, especially specific types of tree leaves and grasses. In mixed maize and livestock farming system, maize stovers can be utilised for more palatable feed supplements. To effectively improve palatability, the following steps should be carried out:

  • Step 1: Where possible, mix grazing species to include browsers and grazers for uniform pasture use. Mixing livestock will reduce overgrazing on certain plants or plant types, distributing grazing pressure. This is a preventative measure. Over-seeding can be used  to fill in bare patches in fields, improve the density of pasture, establish improved grass varieties and enhance your grass vigour. It’s an easy way to improve an existing old or worn out, diseased or insect prone pasture by planting of grass seed directly into existing pasture, without tearing up the pasture, or the soil.
  • Step 2: Speak to agricultural suppliers as palatability can be improved by enhancing the quality of the feed through addition of feed supplements.
  • Step 3: If using silage from high moisture crops, it may be worth exploring feed flavourants as they mask the odours and flavours of alcohol formed as plant material ferments. Natural flavourants can include garlic, anise and black cumin, but artificial flavours are also available. Ratios for addition to fodder is very low - 0.5 to 1.5 %.
  • Step 4: If using dry grass for feed, chopping and addition of molasses  and other concentrates can improve palatability of drier grasses; however, as it needs to be mixed with urea and water, guidance should be sought in terms of mix-ratios from a veterinarian to ensure that urea intake does not exceed recommended amounts.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Increasing palatability of feed increases consumption and as a result, production.
Increase Resilience
Identifying methods for increasing palatability enables farmers to broaden fodder options, which can support adaptation if normal feed stock is affected.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_45_IncreasedPatabilityAcceptability_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Over-sowing increases forage quality and productivity.

Drawbacks

  • Pasture palatability is affected by factors such as taste, smell and starch content.

Fodder

Value Chain
Soils
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Fodder is the agricultural term for animal feed. Fodder trees and shrubs play an important role in bridging the gap between livestock feed requirements and the low quality and quantity of feeds available to many farmers. As well as providing feed or acting as a feed supplement for livestock, fodder trees and shrubs supply other benefits, such as firewood and erosion control. Fodder trees are either grown in-situ, from seed, and others are planted in nurseries and then transplanted to the field at the beginning of the rainy season. The transplanting method can be more successful than the direct planting - as high as 34 % better, but with a 24 % increase in cost per plant. Benefits of using fodder trees and shrubs as a dietary supplement include improved growth, health and reproductive capacity, and increased milk and meat production, mostly through increased protean uptake. Fodder trees and shrubs can be planted as living fences, field boundaries and in tree/shrub plantations. Popular species include African acacias, and Atriplex nummularia, Cassia petersiana, C. mopane, D. cineria, F. albida, Julbernadia paniculata, P. reclinata, Piliostigma thonningii, Swartizia madagascariensis and Trema orientalis.

Farmers of all categories can use this climate smart sustainable approach to produce both livestock and field crops to obtain improve benefits, improving nutrition for livestock animals, improving soil health, reducing cost of livestock feeding, and as a result increasing income

Technical Application

To effectively carry out fodder tree-shrub production using a nursery environment – a covered or exposed separate planting area, often close to the farm so saplings can be tended easily - consider the following steps:

  • Step 1: Identify one or more suitable species for fodder production, looking at suitable climatic, soil requirements, nutritional value and palatability, also considering source-plant (for cuttings) or seed availability.
  • Step 2: Take cuttings of up to *1 metre in length from mature trees, cutting at an angle. Cutting should be planted within three days, and if transported, cutting end should be covered in wax or petroleum jelly.
  • Step 3: Cuttings should be planted in 10 to 15 cm of soil either directly where they will grow or shallower in polythene planting cups.
  • Step 4: Fodder crops should be planted as the rainy starts, providing sufficient water and mobilising enough nutrients to assist rapid growth.
  • Step 5: Harvesting is again species specific*, and it is important to determine if drying prior to feeding, affects palatability or nutritional value.
  • Step 6: Harvesting frequency should also be determined independently*as plants mature to ensure sustainable production that does not stunt long-term growth and productivity.
  • Step 7: The farmer should consider how much fodder needs to be consumed immediately, how much dried as hay, and how much chopped and compressed to make silage.

Length of cutting, period prior to transplantation, and harvest quantities vary from species to species. Seek guidance from an agroforestry specialist or farmers that have experience with the process when selecting species, and how specifically to plant, manage and harvest fodder crops. An important element to understand is the volume of tree or shrub-based fodder each animal will require.

Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Higher meat and/or diary production per unit area of land.
Increase Resilience
Diversification of diet can mitigate the effects of drought on availability of fodder in pasture/ rangeland. Co-benefits in improving soil fertility and reducing erosion.
Mitigate Greenhouse Gas Emissions
Woody shrubs and trees lock carbon.
Additional Information
  • Franzel, S., Carsan, S. Lukuyu, B, Sinja, J. Wambugu, C. 2014. Fodder trees for improving livestock productivity and smallholder livelihoods in Africa. Current Opinion in Environmental Sustainability. 6
  • World Agroforestry Centre, 2019. Fodder.
  • Smith, O.B. 1994. Feeding fodder from trees and shrubs: Better Farming Series No. 42. Food and Agriculture organisation of the United Nations. Rome, Italy.
  • Karanja G.M. and C.M. Wambugu 2004. Fodder Trees for More Milk and Cash. Ministry of Agriculture (Kenya)/Kenyan Agricultural Research Institute, Nairobi, Kenya.
  • Chakeredza, S., Hove, L., Akinnifesi, K.K., Franzel, S., Ajayim, O.C., and Sileshi, G., 2007.Managing fodder trees as a solution to human–livestock food conflicts and their contribution to income generation for smallholder farmers in southern Africa. Natural Resources Forum 31 286–296
  • Steven Franzel, S., Carsan, S., Lukuyu, B., Sinja, J. and Wambugu, C.2012. Fodder trees for improving livestock productivity and smallholder livelihoods in Africa. Current Opinion in Environmental Sustainability, 6.
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_44_FodderShrubsTrees_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Fodder trees and shrubs can be highly beneficial sources of feed and nutrition for livestock, augmenting, or completely replacing traditional grazing.
  • Can be utilised when over-grazing has occurred, to allow range land to regenerate.
  • Fodder trees and shrubs add vital nutrients to the soil.
  • Fodder trees and shrubs can provide other benefits, including acting as living fences, and wind-breaks, as well as supplying firewood.
  • Crop rotation is important and fodder crops often act as nitrogen fixers (legumes) as well.
  • Fodder crops can also act as cover crops protecting and maintaining soil quality.

Drawbacks

  • Growing fodder can be laborious.
  • The number of fodder trees and shrubs may be extensive, therefore sufficient land is required.
  • Not only does the gathering of fodder require additional labour, but the harvested crop also requires management.

Carrying Capacity Improvement

Value Chain
Annual Average Rainfall
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Carrying capacity defines the number of Animal Units (AU; head of cattle or number of sheep, goats or other animals) that can graze in a rangeland unit without exhausting the vegetation and soil quality – essentially optimally utilising resources. Optimum carrying capacity is where a given unit of rangeland can support healthy populations of animal species, while allowing an ecosystem to regenerate, thus creating a sustainable balance. The stocking rate - defined as the number of animal species grazing a unit of rangeland for a limited period - must be kept fixed on an average year, meeting the carrying capacity to allow regeneration, the fallen seeds to rejuvenate and the soil to recover. However, stocking rates can fluctuate depending on the nature of the vegetation, rainfall variability, herd composition and management system. If the conditions are not favourable for vegetation growth during drought season, the number of livestock or the grazing period must be adjusted to avoid overgrazing. Moreover, the purpose of livestock keeping, i.e. for milk, meat, or wool production, will determine the carrying capacity of a rangeland unit. Factors such as climatic zone, rainfall dependency, class of livestock (steer, dry cow, calves, lactating cow and bull, etc), health of grassland and animal species affect the stocking rate. While relevant in all climatic zones, it is more applicable in arid and semi-arid zones where rainfall is most scarce. This climate smart practice increases production (meat/dairy), increases pasture resilience to extreme climate hazards (drought) and enhances soil fertility.

Technical Application

To effectively implement Carrying capacity improvement:

  • Step 1: There is no standard equation to determine the carrying capacity of an area, as many variables apply and factors relevant within each context including size of land unit, amount, frequency and timing of rainfall seasons, type of vegetation, species of animal, etc.
  • Step 2: Extension officers should aim to support farmers to continuously monitor rangeland status and realise the impacts of over-grazing and the benefits of finding an equilibrium.
  • Step 3: Constant monitoring of the pasture and animals must be carried out throughout the year to check if stocking rate aligns with the carrying capacity of the land unit. If land degradation is identified, adjustments to stocking rates should be considered, in the context of season and landscape regeneration.
    • For communal grazing land, it is ideal to use Animal Units (AU) to calculate the relative grazing impact of different kinds and classes of domestic livestock and/or even common grazing wildlife species for one month (AUM = Animal Unit Months). This information should support collective decision-making regarding rangeland resources.

        Using a conversion table of, the AUE (Animal Unit Equivalent) and the formula:

        1) multiply the number of animals to be grazed on the pasture by AUE to determine total AU, then

        2) multiply the total AU by the number of months planned to graze (see formula below or

        Worksheet A of the Range Calculator).

        Formula: _____________ x _____________ = _____________ x _____________ = _____________

                        # Animals         AUE(table)     Animal Units (AU)   Months (M)           AUM

  • Step 4: One option for effectively responding to carrying capacity challenges is shift or changing grazing species if high consumption species are placing pressure on a particular unit of land.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Higher meat and/ or dairy production per unit area.
Increase Resilience
Improved pasture (through proper management) allow higher numbers without retrogression, thus more resilient even to drought conditions, erosion, flooding, etc.
Mitigate Greenhouse Gas Emissions
Increases soil organic matter and plants-thus locks more carbon (c-sequestration).
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_43_CarryingCapacityImprovement_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Identifying, achieving and maintaining optimal carrying capacity helps to avoid rangeland degradation including vegetation depletion and soil erosion, bush encroachment, and optimises resource use.
  • Effectively monitoring carrying capacity can allow communities to respond to climate change impacts, resulting from shifting rainfall patterns and temperature regimes.

Drawbacks

  • Rainfall dependency, class of livestock and quality of grassland affect stocking rate.
  • The stocking rate must be monitored to avoid animal overcrowding, which might cause diseases to spread quickly.
  • It is important to monitor the plant species in your pasture and or rangelands to be able to determine its health and trend.
  • Reseeding should be considered in areas when land is degrading.
Subscribe to Medium

Funding Partners

4.61M

Beneficiaries Reached

97000

Farmers Trained

3720

Number of Value Chain Actors Accessing CSA

41300

Lead Farmers Supported