Skip to main content

Farmer Managed Natural Regeneration

Value Chain
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Farmer Managed Natural Regeneration (FMNR) is a technique of restoring degraded land and monitoring restoration of the land involving the systematic regeneration and management of trees and shrubs from tree stumps, roots and seed. Degraded arid land often features left over indigenous plants, which if maintained and promoted to grow can improve pasture and crop lands while simultaneously encouraging re-growth of seeds, roots and shrubs. Key to this practice is the existence of living stumps, tree roots and seed that, if encouraged, will regrow. The land is protected from being completely cleared or further grazed and this allows trees to grow without disturbance. Once the stumps and trees start to grow, pruning and trimming of trees is required to allow space between trees and promote healthy long tree trunks. Once the trees have matured, intercropping can take place or livestock can be re-introduced to graze.

While requiring some investment in terms of effort, FMNR has climate smart advantages such as controlling rainfall/irrigation run-off, supporting water quality improvements, providing sources of timber or fodder, supporting habitant regeneration for pollinator insect species, acting as sun shade, and reducing soil erosion.

Technical Application

To effectively implement Farmer Managed Natural Regeneration:

  • Step 1: Degraded land needs to be identified and living stumps, roots and seeds need to be encouraged to regrow. This may include periodic watering. Focus should be on indigenous species, and present tree species (existing stumps).
  • Step 2: Consider leaving the field un-grazed to promote tree growth.
  • Step 3: Select tree stumps and the tallest and straightest stems to grow into trees.
  • Step 4: Prune and manage by removing stems and unwanted side branches.
  • Step 5: Maintain the process by occasionally pruning side branches.
  • Step 6: Manage the land consistently to avoid overgrazing, which can lead to further degradation.
  • Step 7: Consider rotational grazing to allow seeds, stumps and underground shrubs to re-grow. This will reduce the cost of replanting. Shrubs and growing trees and saplings need to be protected before introducing livestock. Shrubs and growing trees and saplings need to be protected before introducing livestock.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Increase availability of biomass, which improves soil fertility and thus production. The trees/shrubs can be a source of income and reduce costs.
Increase Resilience
Reduces erosion of soil and evaporation. Increases water retention and infiltration. Diversifies income sources. Improves yield stability.
Mitigate Greenhouse Gas Emissions
Locks more carbon in plants and in soil.
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_35_FarmerManagedNaturalRegeneration_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • FMNR improves soil quality and reduces soil erosion.
  • Improved dry-season pasture.
  • Agricultural management practices such as pruning, and trimming are carried out appropriately in turn improving growth and air circulation.
  • Higher livestock productivity.
  • Provides protection from wind and shade for livestock, when introduced.
  • Increased availability of firewood, thatch and other non-timber forest-products/materials.

Drawbacks

  • The land needs to be managed consistently to avoid overgrazing.

Agroforestry: Silvo-Pasture

Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Agroforestry is a land management practice that combines the planting and management of trees and shrubs with crops and pasture, providing benefits of soil health, crop yields, resilience to climate change, biodiversity and economic opportunities. Agroforestry encompasses numerous practices, including silvo-pasture, agro-silvo cultural, and agro-silvo-pastural. One such successful agroforestry practice is silvo-pasture – the planting of trees and shrubs within livestock grazing pasture lands. Not to be confused with agrosilvopasture (combination of crops, shrubs/trees and livestock, silvopasture is the combination of trees and shrubs with pastural grazing land. The trees can be regularly or irregularly placed, and in addition to improving soil conditions in pasture lands, also provide production of protein-rich tree fodder for on farm feeding and for cut-and-carry fodder production. If growing larger species of tree, coppicing can also produce timber for building materials and firewood.

Technical Application

To effectively implement hedge planting:

  • Step 1: Purchase saplings of selected tree species from a local nursery or grow saplings in separate on-farm nursery. If growing on-farm, saplings should be held-up with an upright support bamboo/wooden pole. Ideally, the farmer should begin exploring silvopasture tree species beginning with indigenous trees, such as acacias, and other local trees. It is worth considering a mixture of species, as well as mixed shallower and deeper rooted trees.
  • Step 2: Once at a meter or over in height, transplant to pastures, surrounding each individual sapling with a wire mesh cage-tube or insert into five-centimetre diameter PVC pipe to protect from browsers. Plant at least ten to twenty meters apart, in either a random or uniform pattern. This is a matter of preference.
  • Step 3: Once saplings are planted, only allow grazing livestock (cows, sheep, ducks, geese, chickens) in the silvopasture, avoiding browsers (goats, etc), which will strip, damage or destroy the saplings.
  • Step 4: Once mature and above browsing height, two plus meters, remove protective cage or pipe.
  • Step 5: Depending on species, pruning, coppicing etc should be performed every two months to ensure that trees remain healthy and productive, while maximising outputs for in-field and cut and carry fodder.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Diversified agricultural outputs supports sustainable agricultural productivity, providing multiple streams of revenue, reducing labour and cost for land clearance and maintaining healthy pasture land.
Increase Resilience
As climate change alters local grazing land, silvopasture can reduce overgrazing and land degradation. Trees introduced into pasture can create a more positive environment for livestock, including shade in warmer climates, and shelter during rainfall.
Mitigate Greenhouse Gas Emissions
Retaining trees within pasture land and minimising complete conversion of land reduces greenhouse gas emissions and retains carbon in the soil.
Additional Information
  • Balehegn, M., 2017. Silvopasture Using Indigenous Fodder Trees and Shrubs: The Underexploited Synergy Between Climate Change Adaptation and Mitigation in the Livestock Sector. Chapter from book The Need for Transformation: Local Perception of Climate Change, Vulnerability and Adaptation Versus ‘Humanitarian’ Response in Afar Region, Ethiopia (pp.493-510). ResearchGate.
  • Jose, S. & Dollinger, 2019. Silvopasture: a sustainable livestock production system. Chapter in J. Agroforest Syst (2019)
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_34_SilvoPasture_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Presence of trees can be beneficial to livestock in terms of shade and shelter, as well as enhancing carbon storage and enriching biodiversity.
  • Manure from livestock can improve soil health in grazing land.
  • Leaf litter and pruned material also add organic matter to soil, improving productivity and drainage.
  • Presence of trees can contribute to reducing soil erosion.
  • Trees can produce numerous forest products, including timber for firewood and construction.
  • There is an opportunity to diversify income for small-holder farms and increase food security.
  • Tree trimmings and leaf litter can also be used for in-field or cut and carry fodder.

Drawbacks

  • Requires some investment in terms of purchase of seed and/or saplings.
  • May require adjustment for mixed grazing and browsing livestock patterns.
  • If dietary requirements of livestock are not complete, animals may strip bark from trees. This can be avoided by ensuring that pasture stocking is not too high, and best efforts are made to encourage pasture health and supplementing livestock feed with the necessary minerals, energy and protein.

Boundary Planting

Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Boundary planting, also known as live fence planting, is a technique used to protect crops from the interference of people and animals that can disturb plant growth. Trees/shrubs are a good example of this approach as they can form a shield when planted along the boundaries of the garden or surrounding a planted field. The trees/shrubs act as wind break to shield plants against strong winds causing physical damage to plants themselves, or the removal of soil (erosion). Additional benefits include the use of branches for firewood or building materials, and the other parts of trees can be used as fodder, fruit or leave harvested for consumption, or for medicinal use. Tree/shrub spacing is critical, as trees that have dense canopies can conversely cause destructive down-drafts, negating the intended benefits. Boundary planting helps limit global warming by mitigating GHG emissions through reducing harmful gases such as, carbon dioxide, from the atmosphere and releasing oxygen.

Technical Application

To effectively implement Boundary Planting practices:

  • Step 1: Plant long lines of two fast growing trees, Caesalpinia velutina trees, between a Bombacopsis quinate and a Swietenia humilis to be replaced over time.
  • Step 2: Consider planting the boundary trees 1.5 metres apart along pre-existing fences.
  • Step 3: Attach metal fencing to the trees to support the large trees without endangering their growth. Harvest fodder when the tree is overgrown.
  • Step 4: Prune lower brunches to encourage upward growth of trees and reduce shed on the plants.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Increases availability of tree shrub products (nuts, fruits, timber etc.) and biomass, which improves soil fertility, and thus production.
Increase Resilience
Reduces erosion of soil and evaporation. Increases water retention and infiltration. Diversifies income sources. Improves yield stability.
Mitigate Greenhouse Gas Emissions
Locks more carbon in plants and in the soil.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_33_BoundaryPlanting_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Live fence planting is cost effective, conserves soil moisture, acts a windbreak and reduces soil erosion. These trees have various benefits such as medicinal use, mulch, livestock feeds, fruits, bee forage, timber and firewood.
  • Maintenance of boundary trees is low with short, medium and long ecological and economic benefits.

Drawbacks

  • Boundary planting occupies more land than a single row.

Alternate Wetting and Drying

Value Chain
Annual Average Rainfall
Soils
Climatic Zone
Water Source
Altitudinal Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Alternate wetting and drying also called intermittent flooding is a technique developed by the International Rice Research Institute (IRRI) to control water consumption in rice fields (CGIAR 2014). This technology saves water throughout the year in areas of variable rainfall. It is designed as a pick-up water system in cases when water consumption is cut. Water levels are monitored and controlled by the removal of excess water, leaving enough water to sustain crops. Alternate wetting and drying reduces greenhouse gas emissions especially methane, which is emitted from flooded rice fields (FAO 2016). The drying phase helps to sustain and develop plant roots. Moreover, costs on fuel used for irrigation are reduced.

Technical Application

To effectively implement Alternate Wetting and Drying practices:

  • Step 1: Alternate wetting and drying should be considered by the farmer after two weeks of rice transplant.
  • Step 2: The farmer should consider digging half of 30 cm tube into soil to monitor water level.
  • Step 3: When the water level is 15 cm below the soil surface the field should be irrigated again with a depth of 3 to 5 cm before water drains.
  • Step 4: This cycle should be repeated until flowering stage to avoid disturbing reproduction because at this stage the crops are sensitive to water stress.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Cost of production reduced through less use of water.
Increase Resilience
Maintain production with reduced inputs. Predictable yields.
Mitigate Greenhouse Gas Emissions
May reduce GHG emissions from irrigation pumps.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_31_AlternateWettingandDrying_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Alternate wetting and drying maintains rice yields in areas with variable rainfall/irrigation water supply.
  • Reduces greenhouse gas emission such as methane.
  • The technology can be carried out in regions prone to heavy rainfall.

Drawbacks

  • Water levels need to be monitored carefully to avoid water stress which might decrease yield.
  • Not recommended in areas with potential salinity stress as reduced water inputs might aggravate salinity levels and cause yield decline.

Rainwater Harvesting

Annual Average Rainfall
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Rainwater harvesting is an agricultural technique of collecting and storing rainwater or runoff in tanks or natural reservoirs. This practice is mostly practiced in arid or semi-arid areas with temporal and spatial variability of rainfall mostly lost as surface runoff or evaporation. Runoff is harvested and utilised as a preventative measure for soil erosion, as well as a water management strategy for irrigating crops and for livestock water. This technique enables farmers to capture and store rainwater during times of plenty for use during times of scarcity. Rainwater harvesting is a technology that maximises the use of existing freshwater resources and is a useful technology for water resource planners and managers in both governmental and non-governmental organisations, institutions and communities.

Technical Application

To effectively implement Rainwater Harvesting practices:

  • Step 1: Create a water collection zone connected to a gutter system.
  • Step 2: Install filters to the water collection zone.
  • Step 3: Connect a hose pipe for easy distribution of irrigation water.
  • Step 4: If a farmer intends to use water for human consumption other than flushing toilets, etc, water quality must be frequently tested using reliable and low-cost/low-tech solutions.
  • Step 5: Use of filters can be considered to reduce particulate and other pollutants but should be thoroughly investigated – as a separate subject – by the extension officer and the farmer, otherwise it could lead to illness. It is recommended that farms utilise harvested rainwater for irrigation and other farming activities only.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
More water available to plants when it is needed.
Increase Resilience
Mitigate dry spells.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_30_RainwaterHarvesting_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Rainwater harvesting acts as a source of water at a point where it is needed, usually stored in a tank.
  • Works as an alternative water source in cases of drought or irrigation system breakdown.
  • Rooftop rainwater catchment construction is simple.
  • Success in rainwater harvesting depends on frequency and amount of rainfall.

Drawbacks

  • Asphalt, tar and wood roofs may contaminate the water making it unsafe for direct human consumption.
  • For potable water collection, lead containing gutters should not be used.
  • Harvested water may be contaminated by animal waste.

Water Spreading Bunds

Value Chain
Annual Average Rainfall
Soils
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Water spreading bunds are barriers used on gradual slopes to slow down surface water and slow filter runoff, increasing the chance of infiltration, capturing runoff sediment, and decreasing soil erosion. Bunds can be built of different materials including packed earth or stones. Bunds can be spread across fields or used in micro-settings around individual trees or plants and should be applied in semi-arid or arid conditions. Bunds efficiently spread rainwater across the system and prevent streams from developing. Implementing bunds in areas with adequate rainfall or irrigation, may cause waterlogging and adversely affect crop growth.

Different types of bunds include:

  • Contour bunds: ridges of soil that follow slope contours and can be implemented at a large scale. Crops are cultivated between bunds.
  • Semi-circle bunds: ridges of varying size build in a half-moon or semi-circle. They are generally applied to rehabilitate rangelands and/or in the production of fodder.
  • Contour stone bunds: lines of stones laid in a shallow dug out areas that slow down the flow of runoff
Technical Application

To effectively Water Spreading Bunds the following should be carried out:

  • Step 1: Farmers should consider making earth bunds by hand, animal ploughs or mechanised ploughs.
  • Step 2: Contour bunds:
    • Contour lines must be plotted and marked prior to developing the bund.
    • A 40 cm deep infiltration pit is dug directly above where the bund will be plotted.
    • Bunds should be spread 5 m to 10 m apart.
    • Material from the infiltration pit will be piled and compacted to form a 25 cm to 30 cm in height with a base of 75 cm.
    • Soil is piled to form a ridge along the contour. The more significant the slope, the closer the bunds must be plotted.
  • Step 3: Semi-circle bunds:
    • Contour lines must be plotted and marked prior to developing the bund.
    • A centre point is chosen as diameter for the bund is selected (this could be 3 m or 30 m depending on the available space). From the centre point a string is used to stake out an even semi-circle.
    • Excavate a small trench before the bund and pile the excavated material. Pile and compact a bund wall, wetting it often to form the wall.
  • Step 4: Contour stone bunds:
    • Developed on less steep slopes.
    • Must have access to local stones.
    • Dig out a shallow ditch, 10 cm to 15 cm in depth.
    • Lay largest stones at the bottom of the ditch and pile smaller stone upward.
    • Step 5: Regular monitoring of bunds should take place, especially after rain events or after significant periods of time. Repairs should be done if any damage is found.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Reduces soil erosion and enables farmers to maintain agricultural productivity.
Increase Resilience
Reduces soil erosion in higher rainfall environments, especially relevant as climates change.
Additional Information
  • The Food and Agriculture Organisation (FAO), 1991. Water Harvesting. Rome, Italy.
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_28_waterSpreading_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Water spreading bunds are implemented on slopes of varying degrees to slow the flow of surface water, increasing infiltration and nutrient capture.
  • Bunds capture water and spread it across an area more evenly, preventing streams, erosion channels and gullies from forming at depression points.

Drawbacks

  • Developing bunds can be laborious.
  • Bunds in areas with adequate rainfall or irrigation may cause waterlogging and affect crop growth.

Half Moon Pits

Value Chain
Annual Average Rainfall
Soils
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Half-moon Pits are water harvesting techniques that assists crop growth in harsh climatic conditions, improving water and nutrient availability, promoting biodiversity and restoring the fertility of the degraded soil. The technique is similar to Zai pits in terms of its purpose. Half-moons are semi-circular wide-open basins used to collect runoff water. The mouth of the half-moons must face a slope where rainwater will flow during precipitation events. Water will be trapped in the pit to irrigate crops. Stones are used to support the half-moon curve to avoid being washed away during rain. The amount of fertilisers required in farming systems decreases when this technique is adopted by farmers. Areas with lots of rainfall are not suitable for this technique as it may lead to water logging effect.

Technical Application

To effectively implement Half-moon techniques, the following steps should be carried out:

  • Step 1: Farmers should consider the diameter of the half-moon  between 2 m – 3 m, with a total surface area of approximately 1.5 sqm and 3.5 sqm.
  • Step 2: Pits should be dug to a depth of between 15 cm to 30 cm.
  • Step 3: Excavated material can be piled around the curved section of the half-moon.
  • Step 4: The curved section of the half-moon can be reinforced by stones to prevent washouts of the half-moon.
  • Step 5: 35 kg of organic fertilisers/compost should be evenly distributed in the half-moon.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Half moon pits support water and nutrient availability, in turn promoting agricultural productivity, especially in harsh climates.
Increase Resilience
Retaining soil water and nutrients supports agricultural productivity.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_27_HalfMoons_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Pits are left to sit while fertiliser/compost material converts to productive soil material.
  • Half-moons allow for nutrient concentration and water infiltration that provides improved conditions for crops to grow.
  • Land that was previously degraded can become productive through the implementation of half-moons.

Drawbacks

Implementing half-moons is very laborious and takes significant people power to implement.

Zai Pits

Value Chain
Annual Average Rainfall
Soils
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Zai pits are based on a traditional technology approach originating from West Africa that assists farmers working on marginal and degraded land. This approach involves the concentration and conservation of nutrients and water at the crop root systems through the digging of small pits (Zai pits) and filling them with compost, with the aim of increasing soil fertility and water infiltration. Zai pits are dug between planting season and filled with organic fertilisers/composts, which attract worms, termites and other insects, creating mix of material that can be used to fertilise crops. Farmers plant crops directly in these pits, prior to rains and water will infiltrate the pits more easily than the surrounding soil. Applying this technology is laborious to implement, but it  has been found to assist farmers in times of drought or in arid conditions to produce successful crops by maximising the resources available. Zai pits allow for mitigation of desertification in degraded land and an economic use of resources in conditions of scarcity, especially in resource constrained environments

Technical Application

To effectively implement Zai Pits the following should be carried out:

  • Step 1: Zai pits should be dug with a diameter of 30 cm to 40 cm and 10 cm to 15 cm deep. 
  • Step 2: Pits should be spaced 70 cm to 80 cm apart resulting in approximately 10,000 pits per hectare.
  • Step 3: The farmer should place 2 – 3 handfuls (200 g to 600 g) of organic fertilisers or compost in each pit.
  • Step 4: Holes that are dug between planting seasons will trap wind eroded soils, which are fertile and form good soils for plating crops.
  • Step 5: It is recommended that 3 tonnes of fertiliser/compost per hectare be available.
  • Step 6: Farmers should consider planting crops in these pits prior to periods of rain.
  • Step 7: Repeated application of Zai pit technology on an annual basis will increase productivity of degraded land in the long term.
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Increased soil fertility from zai pit implementation improves agricultural productivity.
Increase Resilience
This approach to fertilising crops and enhancing nutrient content can aid adaptation, especially in arid and semi-arid climates.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_26_ZaiPits_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Earth that is excavated from the hole dug can be used to form a ridge around each pit to help capture and retain water.
  • Zai pit technology can be applied to marginal or degraded land or in semi-arid to arid conditions to allow farmers to rehabilitate soil/land and productively grow crops.
  • Zai pits allow for nutrient concentration and water infiltration that provides improved conditions for crops to grow.
  • Land that was previously degraded can become productive through the use of zai pits.

Drawbacks

  • Implementing zai pits is laborious and takes significant people power to implement – but may be the only option in marginal environments.

In Field Water Harvesting

Value Chain
Annual Average Rainfall
Climatic Zone
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

In-field water harvesting is the practice of increasing water infiltration and moisture retention in the soil. The agricultural technique involves the collection of rainwater runoff from fields that is collected and stored for future needs. This water can be stored in infiltration pits and later used to water the same crops, other crops through an irrigation system (usually high value crops, including fruit trees), or used for domestic purposes. Factors like soil, water, and plant type influence the effectiveness and productivity of rainwater harvesting. This type of water harvesting is generally implemented in areas of very low rain (semi-arid) conditions. In-field water harvesting entails establishing micro-catchments at the farm scale, where sloped areas have been cleared or cropped to direct rainwater to the water storage area (a pit that has been dug to store/hold water). Utilising strip cropping to growing crops while providing a method for directing rain is sometime practiced. The soil type has a limiting factor in collecting in-field water due the infiltration rates. In-field water harvesting saves rainfall water that can be used over a longer period than during and immediately after a rainfall event, reduces the risks of crop failure due to no or limited rainfall, and increases rain water productivity.

Technical Application

To effectively In Field Water Harvesting techniques, the following steps should be carried out:

  • Step 1: Land is cleared, berms are developed, and crops are planted in order to direct water to the infiltration point.
  • Step 2: The catchment areas should be sloped no more than 5 % and the area should be cleared to promote catchment as much as possible.
  • Step 3: The infiltration pit (where water is stored) should be dug at the lowest point of the catchment areas and line infiltration pits with plastic or concrete roofing to limit water loss, and can be used as a source of irrigation for fruit trees and other high value crops.
  • Step 4: Paths can be built of soil to guide water to the infiltration pit.
  • Step 5: Alley cropping, or strop cropping can be used, with areas between trees and crops dug deeper like a trough to direct water to the infiltration pit.
  • Step 6: To access water from infiltration pits, farmers can introduce a pumping system and water can be distributed around the farm as necessary
Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Water is available to plants when it is needed. Reduced nutrient leaching.
Increase Resilience
Mitigate dry spells.
Mitigate Greenhouse Gas Emissions
Can lock more carbon in the soil. More efficient use of fertilisers.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_25_InFieldWaterHarvesting_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Harvested water used in irrigation systems.
  • In-field water harvesting saves rainfall water that can be used over a longer.
  • Reduces the risks of crop failure due to no or limited rainfall.
  • Increases rainwater productivity.

Drawbacks

  • Major issues with a dug-out infiltration pit is evaporation and seepage. Evaporation can be combated by the addition of mulch to water and seepage can be prevented by including some kind of liner (plastic sheet, concrete, etc.). In addition, large plastic, steel or concrete container can be built or sunk below surface to prevent major seepage. Roofs can be built over infiltration pounds or built containers to limit the loss of water to evaporation.

Drip Irrigation

Value Chain
Annual Average Rainfall
Soils
Climatic Zone
Water Source
Decision Making
Farming Characteristics
Mechanisation
Labour Intensity
Initial Investment
Maintenance Costs
Access to Finance/Credit
Extension Support Required
Access to Inputs
Access to Markets
Gender/Youth Smart
Description

Drip irrigation is a method of slow delivery of water to crops, through highly-controlled flow management, applied along the soil or at the sub-surface level directly to crop root systems. Drip irrigation is an effective system for conserving water while ensuring that it is used optimally without losing it to evaporation through high efficiency water delivery. Drip irrigation involves establishing a network of tubes, values and pipes connected to water source by a pump, along crop rows. A water source is required which is a drawback as many dryland areas lack these water sources. Drip irrigation is a climate smart option as it increases farmer resilience to the effects of climate change.

Technical Application

To effectively implement drip irrigation:

  • Step 1: A reliable water source must be available - natural (natural or through rain-water harvesting).
  • Step 2: Acquire a pump system (approximately $US 100) that maintains enough pressure to deliver water through the system or an elevated tank.
  • Step 3: Connect lines or hoses and laterals that run from the pump system across the planted fields.
  • Step 4: Run lines or hoses with emitters (drippers) or small punctures at the surface level along planted crops or just below the surface providing water to the roots system of the plants.
  • Step 5: Once the system is operable, the pump can be turned on and water dispersed as required by the nature of the crop and can also be implemented with supplemental irrigation strategies (Technical Brief 23).
  • Step 6: Monitor the irrigation system regularly to ensure there are no malfunctions and the system is maintained. Crops that receive regular water can develop shallow root systems and any prolonged disruptions in service could have   significant impacts.
  • Step 7: If applying drip irrigation in sloped conditions, follow the contours of the slope as outlined in Technical Brief 16.

Once a drip irrigation system is up and running, farmers can explore fertigation, the addition of soluble fertilisers into the irrigation system water for distribution directly to plants.

Return on Investment Realisation Period
Crop Production
Fodder Production
Farm Income
Household Workload
Food Security
Soil Quality/Cover
Biological Diversity
Flooding
Crop/Livestock Water Availability
Wind Protection
Erosion Control
Increase Production
Energy saving.
Increase Resilience
Increase crop yield.
Mitigate Greenhouse Gas Emissions
Continued production in changing environments.
Additional Information
PDF File
/sites/secondsite/files/tb/CCARDESATechnicalBrief_24_DripIrrigation_2019-10-17_0.pdf
Benefits and Drawbacks

Benefits

  • Maximises efficiency in crop irrigation in dryland or variable climate conditions.
  • Minimizes the loss of water to evaporation.

Drawbacks

  • Requires consistent water source.
  • Costs of establishing the system, pump and lines/hoses can be significant depending on configuration, etc.
  • Requires continual monitoring and may need regular maintenance.
Subscribe to to 500mm

Funding Partners

4.61M

Beneficiaries Reached

97000

Farmers Trained

3720

Number of Value Chain Actors Accessing CSA

41300

Lead Farmers Supported